AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 22/1 DECENTRALIZED CONTROL OF LARGE SPACE STRUCTURES.(U) DEC 81 W T MILLER AFIT/GAE/AA/81D-20 ML AD-A111 171 UNCLASSIFIED Jorj Annz END DATE PILMED DTIC WALL IN # UNITED STATES AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio This document has been approved for public release and sale; its distribution is unlimited. **82 02** 18 032 13 - 5 THE FILES COLE Decentralized Control of Large Space Structures Thesis AFIT/GAE/AA/81D-20 William T Miller Capt USAF A # DECENTRALIZED CONTROL OF LARGE SPACE STRUCTURES #### THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirement for the Degree of Master of Science Accession For NTIS CLASI DESCRIPTION Unring Course of Clast Ъу William T. Miller Captain USAF Graduate Aeronautical Engineering December 1981 Approved for public release; distribution unlimited. #### Preface The scope of this investigation would have been greatly reduced if it had not been for the ever constant aid and guidance of my thesis advisor, Dr. R. A. Calico. The foundation which he provided made all of the development contained in this research paper possible. For the refinement and technical polishing, I would like to thank Captain J. Silverthorn. I would also like to express my gratitude to the entire department for the courses in control and optimazation which played a key role in the deeper understanding of the theory behind the design. Finally, I would like to acknowledge the support from my wife, Deb, which helped provide motivation throughout this research. William T. Miller ## Contents | Preface | · · · · · · · · · · · · · · · · · · · | |----------|---------------------------------------| | List of | Figures | | List of | Tables | | Abstract | | | I | Introduction | | II | System Model | | III | Equations of Motion | | | Reduced Order Model | | | Modal Control | | | Single Controller | | | Dual Controller | | | Three Controllers | | IV | Transformation Technique | | V | Computer Model | | VI | Investigation | | VII | Conclusions | | VIII | Recommendations | | Bibliogr | aphy | #### Contents (continued) | Appendix | Λ | ٠ | | • | ٠ | | ٠ | | • | | • | | • | | | ,'/ | |----------|---|---|--|---|---|---|---|--|---|---|---|--|---|--|--|-----| | Appendix | В | | | | | , | | | | • | | | | | | , , | | Vita | | | | | | | | | | | | | | | | 21 | # list of reques 1 System Model , # List of Tables | I | Node Coordinates | ? | |------------|---|----| | II | Results of NASTRAN Analysis | 8 | | III | Initial Conditions for Time History | > | | IV | Triple Controller Coupled Terms | 21 | | V | System Eigenvalue Analysis - Single Controller (8 Modes) | 39 | | Va | Time Response - Single Controller (8 Modes) | 40 | | VI | System Eigenvalue Analysis - Single Controller (12 Modes) | 42 | | VIa | Time Response - Single Controller (12 Modes) | 43 | | VII | System Eigenvalue Analysis - Two Controller (8 Modes) | 45 | | VIIa | Time Response - Two Controllers (8 Modes) | 46 | | VIII | System Eigenvalue Analysis - Two Controllers (12 Modes) | 47 | | VIIIa | Time Response - Two Controllers (12 Modes) | 48 | | IX | Angular Relationships Between Modal Amplitude Vectors | 49 | | Х | System Eigenvalue Analysis - Two Controllers (12 Modes) | 51 | | V - | Time Description (12 Modes) | 50 | #### Abstract A development and analysis of a single controller, before and after the elimination of "spillover" terms, is implemented to attempt to achieve desired response characteristics of the structure under evaluation. Using this derived data as a basis for comparison, a pair of decentralized controllers are implemented on the structure. The characteristics of the structural response is dramatically improved through the implementation of these decentralized controllers. Problems encountered with the implementation of more than two decentralized controllers are investigated. The structure used in the controller evaluation is a lumped mass tetrahedron. The four masses of this model are connected through isotropic massless rods capable of supporting axial loading only (no bending). NASTRAN is used to develop a normal mode approximation of the structure, while providing mode shape and frequencies for the resultant twelve mode model. Pointing accuracy of the apex is used in determining figures of merit to evaluate the effectiveness of the control applied. Control is applied through each of the 6 sensor/actuator pairs located on the model. Controllers are developed using linear optimal techniques which produce feedback gains proportional to the state. The state is represented as modal amplitudes and velocities. The feedback gains are established via steady state optimal regulator theory. The system response is evaluated initially using only a single controller on an eight mode truncated model then on the entire twelve mode model. A comparison is made with the system prior to the elimination of the observation spillover and after the transformation technique is applied. For the study, four modes are designated as controlled and four as suppressed. The remaining modeled modes are designated residual. An additional controller is added with no addition of sensors or actuators. While the response of the single controller system is unable to meet the design criteria, the addition of a decentralized controller more than adequately achieves the desired response. The modes designated as residual show very little movement as a result of any of the control forces required or transformations applied to the various systems. As a result of the choice of the higher frequency, modes as residual is verified. #### Introduction with the success of the Space Shuttle Program, we have entered an era where the construction of large space structures will become a reality. To achieve practicality and useful system efficiencies, the proposed sizes of these structures are hundreds of meters in diameter. As the size and flexibility of these structures increase, the number of low frequency structural modes that enter the bandwidth of system controllers also increases. To accomplish control of such vehicles, modeling becomes very critical. Even with improved modeling techniques, there are still modeling inaccuracies which, in the limit, could result in unstable conditions if not properly compensated. The method of control that is both realizable and viable is modern state space control theory. Using this method, however, due to computational requirements, only a limited number of structural modes can be handled by any single controller. Hence, reduced order controllers are required. The coupling of these reduced order controllers with detailed finite element analysis of the particular structure can be successfully adapted to meet the requirements of several missions and varied flexible structures. The limiting factor, as to how many of the finite number of modeled modes may be successfully controlled, is the capabilities of the on-board computer. As a result of these limitations, only these modes which are deemed detrimental to mission requirements are controlled. A specific example would be a photographic satellite where pointing accuracy is considered critical while minor vertical vibrations may be considered inconsequential; as a result, only those modes affecting pointing accuracy would be controlled. While specific control of these isolated modes would be ideal, it must be realized that in the real situation, the sensor data will be contaminated by the uncontrolled modes and these same uncontrolled modes may be affected by required inputs to the desired modes. These coupling affects are referred to by Balas (Ref 1) as "observation spillover" and "control spillover". It is shown that either of these system coupling effects may lead to overall system instability. The method of control proposed by Balas is based on the use of narrow bandpass filters which effectively comb out the suppressed modes, thus eliminating observation spillover. Another technique which was first presented by Sesak (Ref 2) and later expanded on by Coradetti (Ref 3) involves a "singular perturbation" technique. It is concluded that this approach, with infinite penalty on spillover, is essentially the same as finding transformation matrix. By applying this transformation matrix to the associated gain matricies, either controller or observer, the spillover terms would be driven to zero. This method can be effective in removing destabilizing cross coupling terms even if these terms do not result in overall system instability; thus improving system response. These goals are accomplished through the application of state space control techniques coupled with singular value decomposition of rectangular matrices of modal amplitude (Ref 4). The primary thrust of this investigation is to study the application of the above techniques on the implementation of two or more decentralized controllers on a lumped mass model of a tetrahedron. The primary means of evaluating the effectiveness of the system will be an eigenvalue analysis of the closed loop system and a time response of the pointing angles to initial conditions. This work first investigates all of the results of Janiszewski (Ref 5) and then expands from the single controller model utilizing only eight modes to the multiple controller system using a twelve mode model representation. The elimination of any spillover terms will be accomplished through the implementation of the transformation technique mentioned earlier. The specifics of the system model used in this investigation will be fully explained in the following section. The model is configured with sensor actuator pairs. The sensors are position sensors only and are used to determine the modal amplitudes at a point. A
singular value decomposition is performed on the matrices of modal amplitudes to obtain a transformation matrix which is employed to eliminate spill-over terms. With the addition of a second controller, the improvement of response in the structure is dramatic. Finally, the possibility of implementing more than two decentralized controllers is examined. #### System Model The model used for this investigation is the tetrahedral model developed at the Charles Stark Draper Laboratory, Inc. This model was arrived at due to the fact that it not only displayed many of the characteristic responses observed in large space structures. It also provided a low order model upon which various control systems could be easily applied so evaluation is simple as a result of the small number of modes present. The performance criteria of the model is based on the motion of the structure at node 1. This is analogous to a line of sight evaluation of a typical optical system. The finite element model of the structure is displayed in Figure 1. The structure is pin connected at each of the nodes; as a result, it is only capable of transmitting axial forces. A Youngs modulus value of one was used to simplify the stiffness computation. The beams are considered massless with all mass located at nodes 1 through 4. The measured location of each node is listed in Table I. An eigenvalue analysis of the structure was accomplished on the NASTRAN Computer Program. The key results of the analysis are listed in Table II. The associated eigenvetors are listed in Appendix A. Table III is a listing of the initial conditions that were applied to the model to achieve a time history of the response. For the purpose of this investigation, it is assumed that these values are applied to achieve a desired pointing requirement. As a result, all of these values could be inputs to the controller prior to actuation, thus achieving initial conditions on all of the error terms of zero. The development of these error terms will be covered in the following derivations of the equations of motion. Table I Node Coordinates | Mode | \overline{X} | <u>Y</u> | <u>z</u> | |------|----------------|----------|----------| | 1 | 0.0 | 0.0 | 10.165 | | 2 | -5.0 | -2.887 | 2.0 | | 3 | 5.0 | -2.887 | 2.0 | | 4 | 0.0 | 5.7735 | 2.0 | | 5 | -6.0 | -1.1547 | 0.0 | | | | | | | 6 | -4.0 | -4.6188 | 0.0 | | 7 | 4.0 | -4.6188 | 0.0 | | 8 | 6.0 | -1.1547 | 0.0 | | 9 | 2.0 | 5.7735 | 0.0 | | 10 | -2.0 | 5.7735 | 0.0 | | | | | | Table II Results of NASTRAN Analysis | Mode | Generalized
<u>Mass</u> | Generalized
Stiffness | $W_n \left(\frac{RAD}{SEC} \right)$ | $\left(\frac{\text{RAD}}{\text{SEC}}\right)^2$ | |------|----------------------------|--------------------------|--------------------------------------|--| | 1 | 1.0 | 1.37 | 1.171 | 1.37 | | 2 | 1.0 | 2.15 | 1.467 | 2.15 | | 3 | 1.0 | 8.79 | 2.965 | 8.79 | | 4 | 1.0 | 12.6 | 3.558 | 12.6 | | 5 | 1.0 | 14.8 | 3.848 | 14.8 | | 6 | 1.0 | 26.5 | 5.149 | 26.5 | | 7 | 1.0 | 32.2 | 5.676 | 32.2 | | 8 | 1.0 | 32.6 | 5.711 | 32.6 | | 9 | 1.9 | 79.9 | 8.940 | 79.9 | | 10 | 1.0 | 106 | 10.030 | 106 | | 11 | 1.0 | 119 | 10.923 | 119 | | 12 | 1.0 | 195 | 13.966 | 195 | | | | | | | Table III Initial Conditions | Mode | Displacement (7) | Velocity $(\dot{7})$ | |------|------------------|----------------------| | 1 | 001 | 003 | | 2 | .006 | .010 | | 3 | .001 | .030 | | 4 | 009 | 020 | | 5 | .008 | . 020 | | 6 | 001 | 020 | | 7 | 002 | 003 | | 8 | .002 | . 004 | | 9 | .000 | .000 | | 10 | .000 | .000 | | 11 | .000 | . 000 | | 12 | .000 | .000 | #### Equations of Motion The equations of motion for the vibrational motion of a large space structure can be written as: $$M \ddot{g} + E g + K g = D \underline{u}$$ (1) where g is an n-vector of generalized coordinates, M is an \mathbf{n} \mathbf{x} \mathbf{n} summetric mass matrix, K is an \mathbf{n} \mathbf{x} \mathbf{n} symmetric stiffness matrix, u is an m-vector of inputs, D is an \mathbf{n} \mathbf{x} \mathbf{m} matrix of modal amplituder evaluated actuator locations, and E is an \mathbf{n} \mathbf{x} \mathbf{n} dumping matrix. Rewriting equation (1) in a modal coordinates where $$\underline{g} = \underline{\emptyset} \cdot \boldsymbol{\gamma}$$ (3) and \emptyset^T is the transpose of the n x n model matrix for equation (1). The model matrix \emptyset is such that $$\underline{\emptyset}^{T} M \underline{\emptyset} = \begin{bmatrix} I \\ \end{bmatrix}$$ $$\underline{\emptyset}^{T} K \underline{\emptyset} = \begin{bmatrix} \omega^{2} \\ \end{bmatrix}$$ $$\underline{\emptyset}^{T} E \underline{\emptyset} = \begin{bmatrix} 2\xi \omega \end{bmatrix}$$ where all matrices which are displayed are n x n diagonal. To be more explicit, [I.] is the identity matrix, $\left[\omega^2\right]$ is a matrix of the eigenvalues of equation (1) and 234 is the associated damping matrix. By placing equation (2) into state vector format, we arrive at equation (4): $$\frac{\dot{x}}{x} = \underline{A} \underline{x} + \underline{B} \underline{u} \tag{4}$$ where $$\underline{\mathbf{x}}^{\mathrm{T}} = \begin{bmatrix} \mathbf{\underline{2}}^{\mathrm{T}} & \dot{\mathbf{\underline{2}}}^{\mathrm{T}} \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 0 & \mathbf{1} & \mathbf{I} \\ -\frac{1}{2} & \mathbf{1} & -2 & \mathbf{I} \end{bmatrix}$$ $$\mathbf{B} = \begin{bmatrix} 0 \\ -\frac{1}{2} & \mathbf{I} \end{bmatrix}$$ In the practical case, the complete state vector is not available and quation (4) must be supplemented by an output equation. If we assume both position and velcoity information is available, the general output equation becomes: $$\overline{Y} = C_p g + C_v g$$ (5) in state vector from $$\overline{Y} = C \overline{x}$$ (6) where $$C = \begin{bmatrix} C_p & \emptyset & . & C_v & \emptyset \end{bmatrix}$$ Equations (4) and (6) are the model of the satellite available to the control designer. #### Reduced Order Model The state vector $\underline{\mathbf{x}}$ from above is a 2n-vector that represents the entire structural model. This state vector can be broken into a number of more specific portions in the form $$\bar{x} = \left[\bar{x}_c^T, \bar{x}_s^T, \bar{x}_r^T, \bar{x}_{um}^T \right]^T$$ $$\bar{x}_c \longrightarrow 2 \quad n_c \quad - \text{ vector, Controlled modes}$$ $$\bar{x}_s \longrightarrow 2 \quad n_s \quad - \text{ vector, Suppressed modes}$$ $$\bar{x}_r \longrightarrow 2 \quad n_r \quad - \text{ vector, Residual modes}$$ $$\bar{x}_{um} \longrightarrow 2 \quad n_{um} \quad - \text{ vector, Unmodeled modes}$$ The unmodeled modes are mentioned here, but will not appear in any of the derivations. These are modes which are beyond the capability of the mathematical system model to approximate. The unmodeled modes, while they may exist in nature, have not been taken into the modeling effort of the system. The response of the actual system will determine if a more indepth model is required to mathematically approximate the real world system. The controlled modes are those modes determined to require active control to achieve desired system response characteristics. In general, these will not necessarily be the lowest frequency modes. Due to computational limitations in control of the vehicle, only a small subset of the modeled modes may be con- trolled; as a result, spillover due to the remaining modes will occur. To eliminate the dilatorious effects of this spillover, a portion of the modeled but uncontrolled mode will be suppressed. The number of which can be suppressed is again dependent on hardware limitations. The remaining modeled modes will be termed residual modes. These residual modes will have "spillover" terms and can be considered representative of those higher frequency modes that are unmodeled. With these definitions, the system state may be represented by the following equations $$\bar{x}_c = A_c \bar{x}_c + B_c \bar{U}$$ (8) $$\overline{x}_{s} = A_{s} \overline{x}_{s} + B_{s} \overline{U}$$ (9) $$\bar{x}_r = A_r \bar{x}_r + B_r \bar{U}$$ (10) $$\overline{Y} = C_c \overline{x}_c + C_s \overline{x}_s + C_r \overline{x}_r$$ (11) The system parameters matrices A, B, and C are as previously described in the text. Furthermore, the matrices B_c can be expressed as: $B_c = \begin{bmatrix} -0 \\ 0 \end{bmatrix}$ where: $$\phi_{c}^{T} D = \begin{bmatrix} a & (\xi_{1}) & \dots & a_{1} & (\xi_{n}) \\ \vdots & \vdots & \vdots \\ a_{n} &$$ where ℓ_i is the location of the jth actuator and n_a is the number of actuators and n_c is the number of controlled modes. In this representation, the coefficient matrix, D, has already been multiplied through. Those values for the structure studied are the NASTRAN results in Appendix A. Similar representations of \emptyset^TD can be developed for both the suppressed and residual modes with the only difference occurring as n_s and n_r , the number of suppressed and residual modes, respectively are used in place of n_c . In a similar manner, if we assume only point sensors located at the points $\boldsymbol{\xi}_{i}$ then $$C_c = C_{p_c} \emptyset$$ where $$C_{p_c} \emptyset = \begin{bmatrix} a_1 & (\xi_1) & \dots & a_{nc} & (\xi_1) \\ a_1 & (\xi_{n_{sen}}) & \dots & a_{nc} & (\xi_{n_{sen}}) \end{bmatrix}$$ where n_{sen} is the number of sensors employed. The equations developed to this point are quite general and independent of structural complexity. With increased complexity, the sizes of the respective matrices are the only variables that will increase in dimension. The general nature of the development is the key to its wide area of possible application to a variety of large space structures. #### Modal Control The control modal upon which the control design is to be based is given by $$\bar{X}_{c} = A_{c} \bar{X}_{c} + B_{c} \bar{U}$$ (8) $$\bar{Y} = C_c \bar{x}_c + C_s \bar{x}_s + C_r \bar{x}_r$$ (11) Three feedback controllers are examined. The form of control
for each controller is: $$\bar{\mathbf{U}}_{1} = \mathbf{G} \hat{\mathbf{X}}_{\mathbf{C}} \tag{12}$$ $$\overline{U}_2 = G_1 \hat{X}_1 + G_2 \hat{X}_2 \tag{13}$$ $$\bar{U}_3 = G_1 \hat{X}_1 + G_2 \hat{X}_2 + G_3 \hat{X}_3$$ (14) where \hat{X}_1 , \hat{X}_2 , and \hat{X}_3 are the specific modes controlled by each controller. Ideally the control law would be G \overline{X} but in this case, where not all of the states are available, the estimated values of the states must be used. The individual closed loop system matrices will be developed sequentially in the following discussion. #### Single Controller Since we are unable to directly measure the entire state vector, it is necessary to employ an observer of the form: $$\hat{\hat{X}}_{c} = A_{c} \hat{X}_{c} + B_{c} \hat{U} + K (y - \hat{y})$$ (15) $$\hat{Y} = C_c \hat{X}_c$$ (16) where $\overset{\text{$\Lambda$}}{\textbf{X}_{e}}$ - estimated state vector $\overset{f A}{{ m Y}}_{{ m C}}$ - estimated output vector The observer gain matrix is chosen such that the error in the state estimate, represented by $$\bar{e}_{c} = \hat{X}_{c} - \bar{X}_{c} \tag{17}$$ is asymptotically stable. The closed loop system stability, including controller and observer, can be evaluated by writing the state equations for an augmented state vector defined below. For the single controller \underline{Z} will be defined as follows: $$\underline{Z} = (\overline{X}_c^T, \overline{e}^T, \overline{X}_s^T, \overline{X}_r^T)^T$$ (18) With the definition the overall closed loop system matrix can be represented in block matrix form as: $$\frac{1}{\bar{Z}(t)} = \begin{bmatrix} A_c + B_c G & B_c G & 0 & 0 \\ 0 & A_c - K C_c & K C_s & K C_r \\ B_s G & B_s G & A_s & 0 \\ B_r G & B_r G & 0 & A_r \end{bmatrix}$$ (19) A. this point it is of interest to look at the development of the observer gain matrix, K_j and the control feedback gain matrix, G. First consider the control gain matrix G. In order to use linear optimal regulator theory, a performance index is defined as: $$J = 1/2 \int \bar{X}_c^T Q \bar{X}_c + u^T R u) dr \qquad (20)$$ where Q - is an n x n positive semidefinite weighting matrix. R - is an m x m positive definite weighting matrix. This performance index, subject to $$\overline{X}_{c} = A_{c} \overline{X}_{c} + B_{c} U$$ is minimized with $$\overline{U} = G X_{C}$$ and $$G = -R^{-1} B_C^T S \tag{21}$$ and S is the solution to the matrix Recatti Equation. $$SA_c + A_c^T S - SB_c R^{-1} B_c^T X + Q = 0$$ (22) The development of the observer matrix can be formu- formulated in an identical development once it is realized that the eigenvalues of the matrix, $(A_c - KC_c)$, are equal to the eigenvalues of the transpose of the matrix. The system can be then written as: $$\widetilde{W}(t) = A_c^T \widetilde{W}(t) - C^T g(t)$$ $$g(t) = K^T W(t)$$ Using this system and defining a similar performance index as listed in equation (20) with the substitution of W for $X_{_{\mathbf{C}}}$ leads to the solution for the gains $K^{^{\mathbf{T}}}$ in the form. $$\bar{K}^{T} = + \bar{R}_{ob}^{-1} \bar{C}_{c} \bar{P}$$ where \overline{P} is the solution to the steady state algebraic matrix Ricatti Equation: $$P A_{c}^{T} + A_{c} P - P C_{c}^{T} R_{ob}^{-1} C_{c} P + Q_{ob} = 0$$ While the system of equations is not block triangular, it can be made block triangular through the elimination of control spillover or observation spillover. Once we have achieved suppression of the appropriate terms, the stability of the system is assured through the proper design of the controller and observer. For the purpose of this research, elimination of observation spillover has been deemed more practical and cost efficient. Additional sensors to achieve the desired observation spillover is much easier to implement than increasing the number of actuators to achieve spillover suppression. #### Dual Controller The following development of a two controller system parallels that of the single controller. The control law to be applied is as stated in equation (13). In this system rather than defining a specific number of modes as suppressed, the goal is to achieve two decentralized controllers which will be independent of each other. The two state equations are: $$\overline{X}_1 = A_1 \overline{X}_1 + B_1 \overline{U}$$ (23) $$\overline{X}_2 = A_2 \overline{X}_2 + B_2 \overline{U}$$ (24) Recalling the general observer equation (15) and equation (16) where the control law applied is equation (13). $$\hat{X}_{i} = \overline{A}_{i} \hat{X}_{i} + \overline{B}_{i} \overline{U} + K (\overline{y} - \hat{y}) \quad i = 1, 2$$ $$\hat{Y}_{i} = C_{i} \hat{X}_{i} \quad i = 1, 2$$ $$\overline{U} = G_{1} \hat{X}_{1} + G_{2} \hat{X}_{2}$$ The error in each system is described as $$\overline{e}_1 = \widehat{\chi}_i - \overline{\chi}_i$$ i = 1, 2 (25) By applying equations (11), (23), (24), (25), and the estimator equations which are listed above, it can be shown that \tilde{e}_i is described by: $$\frac{\dot{e}_{1}}{\bar{e}_{1}} = \hat{X}_{1} - \bar{X}_{i} = (A_{1} - K_{1} C_{1})\bar{e}_{1} + K_{1}C_{2}\bar{X}_{2} + K_{1}C_{r}\bar{X}_{r}$$ (26) $$\frac{1}{\bar{e}_1} = \hat{X}_2 - \bar{X}_1 = (A_2 - K_2 C_2)\bar{e}_2 + K_2 C_1 \dot{X}_1 + K_2 C_r \bar{X}_r$$ (27) The associated \widehat{X} equation may be simply derived using the system equation (23) and the control law (13). The resulting equation is: $$\dot{\bar{X}}_1 = (A_1 + B_1 G_1) \bar{X}_1 + B_1 G_1 \bar{e}_1 + B_1 G_2 \bar{e}_2 + B_1 G_2 \bar{X}_2$$ (28) A similar application of the control law and the residual model equation (10) provides the following results: $$\bar{X}_r = A_r \bar{X}_r + B_r G_1 \bar{X}_1 + B_r G_1 \bar{e}_1 + B_r G_2 \bar{X}_2 + B_r G_2 \bar{e}_2$$ (29) By defining an overall system vector z of the fom: $$\bar{Z}^{T} = \left[\bar{x}_{1}^{T}, \bar{e}_{1}^{T}, \bar{x}_{2}^{T}, \bar{e}_{2}^{T}, \bar{x}_{r}^{T}\right]$$ (30) The closed loop system model including the two decentralized controllers, each utilizing state variable feedback, can be written as: $$\dot{\overline{Z}} = \begin{bmatrix} A_1 + B_1 & G_1 & B_1 & G_1 & B_1 & G_2 & B_1 & G_2 & 0 \\ 0 & (A_1 - K_1 C_1) & K_1 C_2 & 0 & K_1 C_r \\ B_2 & G_1 & B_2 G_1 & (A_2 + B_2 G_2) & B_2 & G_2 & 0 \\ K_2 & C_1 & 0 & 0 & (A_2 - K_2 C_2) & K_2 C_r \\ B_r G_1 & B_r G_1 & B_r G_2 & B_r & G_2 & A_r \end{bmatrix} (31)$$ It is apparent that the suppression of all the "observation spillover" or the "control spillover" terms is insufficient to completely triangularize the system even in the absence of residual modes. To achieve a closed loop system with the above characteristics, it is necessary to suppress the control spillover term of one system, e.g., B_1 G_2 , while suppressing the observation spillover of the other system, K_1 C_2 . The judicious selection of modes again is critical so as to provide a frequency separation between the lower frequency controller and the residual modes. The primary advantage of two controllers is the number of modes controlled can be divided between the two systems. This is important since the computational burden of solving the Ricatti Equation increases roughly as the cube of the order of the equation (Ref 3). Therefore, the advantages of solving the Ricatti Equation of two smaller controllers is apparent. #### Three Controllers To avoid a repetition of all of the equations developed in the previous section, it can be stated that the control law of equation (14) was applied to arrive at the closed loop system model of this section. The \bar{Z} vector is defined as: $$\overline{Z} = \left[\overline{X}_1^T, \overline{e}_1^T, \overline{X}_2^T, \overline{e}_2^T, \overline{X}_3^T, \overline{e}_3^T, \overline{X}_r^T\right]^T$$ (32) This results in an overall closed loop system equation: $$\dot{\overline{Z}}(t) = \begin{bmatrix} A_1 + B_1 G_1 & B_1 G_1 & B_1 G_2 & B_1 G_2 & B_1 G_3 & B_1 G_3 & 0 \\ 0 & A_1 - K_1 C_1 & K_1 C_2 & 0 & K_1 \mathbf{G}_3 & 0 & K_1 C_r \\ B_2 G_1 & B_2 G_1 & A_2 + B_2 G_2 & B_2 G_2 & B_2 G_3 & B_2 G_3 & 0 \\ K_2 C_1 & 0 & 0 & A_2 - K_2 C_2 & K_2 C_3 & 0 & K_2 C_r \\ B_3 G_1 & B_3 G_1 & B_3 G_2 & B_3 G_2 & A_3 B_3 G_3 & B_3 G_3 & 0 \\ K_3 C_1 & 0 & 0 & C & 0 & A_3 - K_3 C_3 & K_3 C_r \\ B_r G_1 & B_r G_1 & B_r G_2 & B_r G_3 & B_r G_3 & B_r G_3 & A_r \end{bmatrix}$$ As discussed earlier, the system presented here cannot be triangularized through complete elimination of observation spillover or control spillover. There are two approaches that can be utilized in the examination of the three controller system. First, through the judicious positioning of sensors, the modal amplitude matrix and thus the system parameter matrices. B and C, of on controller can be made orthogonal to the remaining two controllers. To completely decouple the system, the terms which must be eliminated are listed in Table IV. By arranging the modes such that two of the controllers operate on modes such that two of the controllers operate on modes that are orthogonal to the third controller, the system would reduce to a two controller system. The system model used in this study has been determined to contain such properties. This will be specifically demonstrated in the investigation portion of the text. At this point suffice it to say that the twelve modes modeled can be divided into two orthogonal groupings. As an example, let controllers one and two operate on the first group of orthogonal modes while controller two operates on a portion of the second grouping. As a result, all cross terms between one or two and three will be equal to zero. This will reduce Table IV to $$B_1G_2 = 0$$ $E_2G_1 = 0$ $K_1G_2 = 0$ $K_2G_1 = 0$ which are the terms required equal to zero to decouple the two controller system, therefore demonstrating the ability to reduce the system to a two controller problem. The second method of system suppression would require an optimization process included in the transformation formation such that Table IV ## Total Decouple of 3 Controller | B_2G_3 |
= | 0 | | $^{\mathrm{B}}2^{\mathrm{G}}1$ | = | 0 | |--------------------------------|---|---|----------|--------------------------------|---|----| | к ₂ с ₃ | = | 0 | | $\kappa_2 c_1$ | = | 0 | | $^{B}1^{G}3$ | = | 0 | OR | ^B 3 ^C 1 | = | () | | к ₁ с ₃ | = | 0 | <u> </u> | к ₃ с ₁ | = | 0 | | $^{\mathrm{B}}1^{\mathrm{G}}2$ | = | 0 | | $^{\mathrm{B}}3^{\mathrm{G}}2$ | = | Ŋ | | к ₁ с ₂ | = | 0 | | к ₃ с ₂ | = | 0 | such terms as B_2G_1 and B_3G_1 of approximately zero. While the possibility of obtaining a transformation matrix orthogonal to both matrices is highly unlikely, an optimazation process can be applied to reduce the value of these spillover terms to insignificant values relative to the system dynamics. This second method would require more on-board computational capabilities which may result in exceeding the designed capacity of the system. As a result, this method would be far more costly to implement thus making the first method the only viable approach. Since it has been demonstrated that the system can always be reduced to a two controller problem through proper sensor and actuator location, only the investigation of the single and dual controllers will be carried out in this research. #### Transformation Technique This section is designed to describe in further detail those methods applied to the model to achieve the block triangular form. This will require the elimination of the cross coupling terms such as K_1C_1 and B_1G_2 in the two controller system. The entire thrust of this method is to drive these terms to zero while keeping the terms B_1G_1 . B_2G_2 , and K_1C_1 , K_2C_2 not equal to zero. This is first done for the single controller case. The technique is then applied to the two controller problem by eliminating the control spillover of one controller while operating on the observation spillover of the second controller. For the single controller system, the elimination of observation spillover is achieved if a K matrix can be found such that $$K \quad C_{S} = 0 \tag{34}$$ $$K \quad C_r = 0 \tag{35}$$ while $$K C = 0 (36)$$ The final equation is constraint that must be met in order to maintain observability over the controlled modes. While it would be optimal to achieve both equation (34) and equation (35) in the system model, in the actual structure this would not be fully realizable. This is primarily due to the large number of modes that are physically present in the structural model. As a result, only a subset of the modeled modes will be suppressed. Thus, only equation (34) will be satisfied. The selection of those modes to be designated as suppressed or as residual is somewhat arbitrary and could be established through an iterative process. Those modes you are most interested in suppressing are those modes which, even though stable, are weakly damped and thus may be driven unstable as a result of the observation spillover. The selection of those modes as residual would be best designated as those modes which are actually shifted further to the left of the jw-axis as a result of the observation spillover, thus stabilizing these modes. Another choice, the one used in this investigation, is to suppress all uncontrolled modes below a certain frequency. The primary assumption here is that the higher frequency modes fall outside of the bandwidth of the controller. However the selection of the suppressed modes is accomplished, the system to be examined is: $$C_{i}^{T} \kappa^{T} = 0 \tag{37}$$ This is nothing more than the transpose of equation (34), however, this form of equation is more useful as will become apparent. To achieve this desired result, the K^T matrix of equation (7) must be transformed such that it is orthogonal to the rows of C_s^T (columns of C_s^T). The C_s^T matrix is sized such that it has the number of columns that corresponds to the number of sensors (n_{sen}) and a non-zero row length of the number of sip; ressed modes (n_s) . Looking at the equation of the transfermation required $$C_{s}^{T}t = 0 (38)$$ The number of linearly independent algebraic solutions, t, are specified as the difference between the rank of $C_s^{\ T}$ and $n_{sen}^{\ }$. The number of suppressed modes is equal to or greater than the number of sensors, no solution vector t can be found unless the rows of $C_s^{\ T}$ are not linearly independent. As a result of this relation, in general, the number of modes that can be suppressed can not exceed the number of sensors available. In terms of output we will define γ by: $$v = T \overline{y}$$ (39) Where " is matrix whose rows are composed of the solution vectors t. Substituting for the value of y: $$v = T C_c X_c + T C_r X_r + T C_s X_s$$ (40) howeve :: $$T C_{c} = 0 (41)$$ As a result of the output, a does not contain the suppressed modes. The new control problem to be considered can be stated as: $$\dot{\overline{X}}_{c} = A_{c} \overline{X}_{c} + B_{c} U \tag{42}$$ $$v = T C_c X_c + T C_r X_r = \frac{1}{c} X_c + C_r^{\pm} X_r$$ (42b) The output v is no longer a vector of dimension $n_{\rm sen}$ but has dimension $(n_{\rm sen}^-$ Rank of $C_{\rm s}^{-T})$. The suppression may, therefore, be thought of as replacing a system of $n_{\rm sen}^-$ sensors with $n_{\rm sen}^-$ -r) synthetic sensors. As long as the system of equations (42) are observable and controllable, the stable matrice. $A_c + B_c G$ and $A_c - K C_c^*$ can be formed and placed in the overall system matrix of equation (19) in which the observation spillover will have been removed. If the suppressed modes for this system are properly chosen, the entire system will remain stable. With that general overview of the purpose an result of the technique, the specifics of obtaining the matrix T will be developed. The matrix of interest in this technique of observation suppression is $C_{\rm S}$. This matrix can be written in the form: $$C_{s} = W \in V^{T}$$ (43) where: W is an $n_{\rm sen} \times n_{\rm sen}$ orthogonal matrix of left singular vectors. V is an $n_{\rm s} \times n_{\rm s}$ orthogonal matrix of right singular vectors. and $$= \left[-\frac{S}{0} : -\frac{0}{0} \right] \tag{44}$$ such that S is a r x r matrix of the non-zero singular values of $C_{\rm S}$ and r is the rank of $C_{\rm S}$ as previously stated. Furthermore, the matrix W can be partitioned such that: $$W = \left[W_{r} : W_{q}\right] \tag{45}$$ The partition W_r is an n_{sen} x r matrix of left singular vectors associated with the non-zero singular values of C_s and W_q is an n_{sen} x q matrix of left singular vectors associated with the zero singular values. Since W is an orthogonal matrix, the product of $\mathbf{W}_{q}^{\ T}$ and \mathbf{W}_{r} is zero which leads to $$W_q^T C_S = W_q^T W_r S V_r^T = 0$$ As a result, it is obvious that the T matrix sought is composed of the left singular vectors associated with the zero singular values of ${\rm C_{s}}$. This transformation is applied to the system as specified in equations (42). #### Computer Model The primary goals in the formulation of the program were flexibility and simplicity. The program is capable of making several diverse runs depending on the desired output or the particular area of interest being examined. The program generates output data for a single controller or a dual controller model. In either of these types of runs, the inclusion of the residual modes is optional. meter matrices (A, B, C,); in the control, suppressed, and residual form; led to these being structured in a subroutine. This format also added the flexibility to change the size of the matrices to meet specific requirements of various investigations. The formation of the initial condition vector is also accomplished in a subroutine. There is a separate subroutine for the different initial condition vectors required for the single or dual controller model. For program initialization certain data is required from either permanent files or parameter assignments. Required data from the user is the number of controlled, suppressed, and residual modes followed by the number of actuators and sensors. Finally, the damping ratio for each of the modes, assumed equal, must be designated; 0.005 for the system studied. The system will then read from permanent file the NAS 'RAN values of the modal amplitude at each actuator location The same data is then entered for each of the sensor locations. For the model considered, these values are identical since the sensors and actuators are colocated, however, it was considered necessary to make separate entires to accommodate those possible situations where the sensors and actuators are not colocated. Finally, the associated frequency for each of the modes is read in from permanent file. For time response calculation the initial conditions for the system and the mode shapes of the point of interest mout also be made available. With the preload of this data, the modal arrangement as controlled, suppressed or residual is at the option of the operator. The various modes may be moved in any manner desired by the operator without the requirement for the preload of any additional modal information. Once a particular selection is made, the program will form the specified matrices and the associated initial condition vector. With the system now completely structured, the steady state feedback matrices are formed (G and K). This is accomplished through the execution of a series of sophisticated subroutines created by Kleinman Ref 6), which provide a numerical solution to the matrix Ricatti Equation. With these matrices formed, an overall system matrix as depicted in either equation (19) or equation (31) is formed dependent on whether a single or dual controller run has been indicated. At this point one can execute the option to create a time history of the line of sight at point 1 in the x and y directions. This type of system response was used since the pointing accuracy of the vehicle was a criteria for
determining the success of the system controller(s). The line of sight was calculated with the use of the zero input equation for the state equation: $$\frac{\dot{\mathbf{X}}}{\mathbf{X}} = \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{u} \tag{46}$$ $$Y = C X \tag{47}$$ The zero input equation is $$X (kdt) = e^{Adt} X (k-1)dt$$ (48) To minimize any problems that might arise as a result of rapid system osciallations not perceived by the discrete model, a DT=.01 was utilized. The $e^{\mbox{Adt}}$ matrix is determined through the Taylor series expansion of the term in the following equation: $$e^{Adt} = I + Adt + A^2dt^2 + A^3dt^3 + \dots$$ (49) The value of the displacement at position 1, in the x and y direction, is calculated each .5 second up to 20 seconds using the mode shapes, previously loaded, and the computed value of X (t). This displacement is calculated through the summation formula: $$X_{\underline{n}}(t) = \sum_{i \neq t}^{m} \emptyset_{ni} X_{i}(t) \quad n = 1, 2$$ (50) Where m is the number of modes in model. For n = 1, the equation computes the line of sight displacement in the X direction and n = 2 represents the Y direction displacement. At this point, the eigenvalues of the matrices (A+BG), (A-KC) and the overall system matrix are computed. This analysis was accomplished by implementing the subroutine EIGRF from the International Mathematical and Statistical Library (IMSL). The eigenvalues of the closed loop system matrix, since they reflect the overall systems stability, determining success of the system suppression. Comparison of these eigenvalues with the eigenvalues of (A+BG) and (A-KC) demonstrate which modes were most affected. The suppression of the system varies whether one or two controllers are implemented by the operator. With a single controller, the observation spillover is eliminated by accomplishing a singular value decomposition of the $\mathbf{C_s}^T$ matrix. This is achieved through the execution of the IMSL subroutine LSVDF. Then by using the associated singular vectors, a transformation matrix is generated. The overall system is then recreated using the transformation technique as is described in section IV. Once the new gain matrix is created, the program loops back and initiates another time response and eigenvalue analysis. In the case of the two controller system of equation (31), it is apparent that the elimination of observation spillover is insufficient to completely decouple the system in the absence of the residual modes. In this case one must eliminate control spillover of one system while eliminating the observation spillover of the other system. The elimination of system one observation spillover was implemented to take advantage of that part of the computer model already structured. The control spillover are implemented in the overall system and a time response calculation followed by an eigenvalue analysis is then accomplished. Since there exists the possibility that modes other than suppressed modes are adversely affected, a series of calculations are required to insure that controlled modes are not aligned with any of suppressed modes. A further check to insure that controlled modes are a linear combination of the suppressed modes is accomplished at the end of the run. When one of these cases are encountered, a regrouping of the modes is required to avoid the detrimental affects of the suppression on the overall system response. While the model used in this study is very specific in its definition, the subroutine structure of the program provides the flexibility to analyze a variety of other system through the simple restructuring of the subroutines that form the A. B. and C matrices to comply with the new system to be analyzed. The only requirement is that the system can be written in the format: $$\dot{\overline{X}} = A \widetilde{x} + B u$$ anc $$\overline{Y} = C \overline{x}$$ #### Investigation A building block method of research was deemed the best approach to make a thorough study of the complete system. As earlier explained, it was determined that due to hardware and cost considerations, observation spillover elimination would be employed when at all possible. Initially, the basic system was researched using only controlled and suppressed modes. This was done to confirm the fact that the system could be block triangularized through the elimination of observation spillover. The eigenvalue analysis that resulted is displayed in Table V. This analysis was accomplished on the first eight modes of the NASTRAGStructural analysis. The control weighting matrix was equal to Q = 20 [1]. At this point, the four residual modes were added to complete the implemen ation of the two-live mode model. The system was analyzed to determine the offect of the four additional modes on the response characteristics of the system. The eigenvalue analysis of this system is listed in Table VI with the associated time response Ii med in Table VI. The value of Q was left at the value of 20 [1] for the remainder of the investigation so that all results could be associated with either the number of controllers implemented or the variou groupings of the modes. Table 7 System Eigenvalue Analysis - Single Controller Modal Assignments | Control1
1,2,4, | | | Suppressed 3,6,7.8 | | | sidual
lone | |--------------------|----------|-----------|--------------------|----------|----------|----------------| | | | Overall | System Eigenval | ues | | | | Before T | rans | formation | | After Tr | ans | formation | | - +0070 | + | 5.73519 | | 02837 | 7 | 5.76583 | | 11995 | + | 5.75026 | | 02855 | + | 5.71073 | |)2574 | + | 5.14935 | | 02574 | + | 5.14935 | | 76602 | <u>+</u> | 3.55616 | | -1.04342 | + | 3.42286 | | -1.12459 | <u>+</u> | 3.27924 | | 34269 | + | 1.16273 | | 5796 | + | 1.25179 | | 01482 | + | 2.96457 | | 5138 | <u>+</u> | 0.77807 | | 50461 | + | 1.43353 | | -1. 3795 | <u>+</u> | 3.76850 | | 13144 | + | 1.46583 | | -1.28709 | <u>+</u> | 3.54688 | | 18344 | + | 1.16990 | | 03486 | <u>+</u> | 3.00503 | | -1.02693 | + | 3.42569 | | 28446 | + | 1.58838 | | -1.24619 | <u>+</u> | 3.66533 | | 71752 | <u>+</u> | 1.00300 | | -1.26459 | <u>+</u> | 3.66181 | $\frac{Table\ \ Va}{\ \ }$ Time Response - Single Controller # Modal Assignments | Controlled
1,2,4,5 | | Suppressed | I | Residual
None | | | | |---|---|--|--|--|--|--|--| | <u>Be f</u> | ore Transfor | rmation | Afte | er Transform | ation | | | | Time | Los-X | Los-Y | Time | Lox-X | Los-Y | | | | Time 50505050505050505050505050505050505050 | Los-X .003950 .003446 .001254 .000368 .000425000500001138000539 .000539 .000539 .000408000408000402 .000469 .000469 .000469 .000469 .000469 .000583000583000376 .000376 .000358000366 | Los-Y .001608 .000080000043000536 .000233 .000408 .000139 .000641 .000541 .000541 .000243000874000622000322 .000094000172 .000081 .000614 .000485 .000082000474 .000047000112000109000474 .000157 .000329 .000482000474 .000157 .000329 .0001820001130001130001366 .000332 | Time -:0:50:50:50:50:50:50:50:50:50:50:50:50:5 | Lox-X .003,77 .003,77 .000,73000,73000,73000,73000,56000,56000,56000,57 .000,56000,57000,51 | Los-Y .001611 .0000680010165001016000437000086000201 .000467 .000638000257000289000292 .000292 .000354 .000354 .000357 .000252 .000123000121000287 .000232000320 | | | | 17.0
17.5
18.0
18.5
19.0 | .000362
.000217
000333
000322
.000263 | .000299
.000008
000026
000156
.000251 | 17.0
17.5
18.0
18.5
19.0 | .000167
.000405
.006067
000494
.000004 | .000111
.000238
00038
000226
000476 | | | | 19.5
20.0 | .000224 | .000195
000166 | 19.5
20.0 | .000405
.000129 | .000326
000014 | | | Based
on the affect of the modes on the motion of the structure, it was deemed most beneficial to control modes 1, 2, 4, 5 while suppressing modes 3, 6, 7, 8. Finally, the residual modes were 9, 10, 11, 12. The choice of the residual modes was based on the fact that because of frequency separation, these modes would be unaffected by the control that was applied to lower frequency modes. This premise is born out in the analysis of the eigenvalues presented in Table VI. This shows a damping ratio for the residual modes of approximately .005 or greater, since 0.005 was used as the open loop damping ratio, the controller has increased the damping of each of the residual modes even through they were not included in the optimal control formulation. Table VI # System Eigenvalue Analysis - Single Controller # Modal Assignments Controlled 1,2,4,5 Suppressed 3,6,7.8 Residual 9,10,11,12 # Overall System Eigenvilues | Before T | ran | sformation | After Tr | ans | formation | |----------|-----|------------|----------|----------|-----------| | 056 > 3 | + | 10.34269 | 05548 | + | 10.34651 | | - 07015 | + | 13.96805 | 07001 | + | 13.96821 | | 06235 | + | 10.04103 | 05902 | + | 10.94113 | | 03573 | + | 8.95523 | 05060 | + | 8.94695 | | 00077 | + | 5.73585 | 02837 | + | 5.67583 | | 81824 | + | 3.67870 | 02855 | + | 5.71073 | | -1.25313 | + | 3.02515 | 82055 | + | 3.65895 | | 56844 | + | . 74670 | -1.21939 | + | 3.04764 | | 155)7 | + | 1.25423 | 37831 | + | 1.09691 | | 02030 | + | 5.70036 | 17427 | + | 1.20133 | | 02574 | + | 5.14935 | 02574 | + | 5.14935 | | -1.08395 | + | 3.89998 | -1.06686 | <u>+</u> | 3.89134 | | -1.429/5 | + | 3.33404 | -1.42363 | <u>+</u> | 3.34893 | | 03425 | + | 3.00435 | 04182 | + | 2.96457 | | 75428 | + | .89816 | 51201 | + | 1.40017 | | 26000 | + | 1.59460 | 13381 | + | 1.47589 | Table VIa # Time Response - Single Controller # Modal Assignments | | | Modal Assignmen | LS | | _ | | |-----------------------|--|--------------------|-------------|---------------------|----------|--| | | rolled
2,4,5 | Suppressed 3,6,7,8 | | Residua
9,10,11, | | | | Before Transformation | | | After | Transformation | | | | <u> 86 (0</u> | we a man a define an amount of the same | Los-Y | wine. | Los Y | Los-Y | | | Time | 1.0 s-1. | .001648 | • • | . 50,4043 | .061651 | | | , • <u>†</u> | | .000076 | 1.0 | .00,300 | .66,665 | | | 1.0 | .003420 | | 1. | .000818 | 00111É | | | 1.5 | .001145 | 000911 | 2.0 | 000455 | 561141 | | | 2.0 | .000375 | 000623 | 2.5 | | 657596 | | | 2.5 | .00497 | .000167 | 3.Č | 000841 | 00/1227 | | | 3.0 | 000382 | .000388 | 3.5 | 001093 | 000274 | | | 3.5 | 000950 | .000183 | | 000361 | .00046; | | | 4.0 | 000289 | .000720 | 4.C | | .00040 | | | 4.5 | .000717 | .000620 | 4.5 | .000710 | .000000 | | | 5.0 | .000350 | .000267 | 5.6 | .000671 | | | | 5.5 | 000491 | 000893 | 5.5 | 000244 | 000207 | | | 6.0 | 000328 | 000667 | 6.0 | 000423 | 000266 | | | 6.5 | .000421 | 000363 | 6.5 | .000087 | 000141 | | | 7.0 | .000420 | .000080 | 7.0 | .000373 | .900975 | | | 7.5 | 000379 | 000146 | 7・> | 000255 | 00020; | | | 8.6 | 000356 | .000113 | 6. 0 | 000366 | 560326 | | | 8.5 | .000226 | .000623 | 8.5 | .0061 ys | .000213 | | | 9.0 | .000403 | .000490 | 9.0 | .000637 | .00,277 | | | 9.5 | 000396 | .000069 | 9.4 | .000009 | .00016. | | | 10.0 | 000526 | 000505 | 10.0 | 000564 | 000424 | | | 10.5 | .000150 | .000019 | 10.5 | 000179 | .65761t | | | 11.0 | .000613 | 000697 | 11.6 | .00037 y | .50,150 | | | | و 20000.
8ر0000. | 000087 | 11.5 | .000178 | .000148 | | | 11.5 | 000392 | 000462 | 12.6 | 000467 | 000281 | | | 12.0 | .000092 | .000170 | 12.5 | 000115 | ~.ûuuú87 | | | 12.5 | .000494 | .000345 | 13.6 | .000434 | .006307 | | | 13.0 | 000444 | .000171 | 13.5 | .000366 | .000132 | | | 13.5 | | 000171 | 14.6 | 000406 | 000144 | | | 14.0 | 000622 | | 14.5 | 000381 | 00(334 | | | 14.5 | 000094 | 000057
.000318 | 15.0 | .000223 | .000223 | | | 15.0 | .000383 | | 15.5 | .000365 | .00(113 | | | 15.5 | .000236 | 000105 | 16.0 | 000168 | 00(024 | | | 16.0 | 00034? | 000179 | 16.5 | 000419 | 00(268 | | | 16.5 | 000082 | 000318 | 17.0 | .000195 | .00(137 | | | 17.0 | .000356 | .000297 | | .000415 | .00(255 | | | 17.5 | .000208 | .000004 | 17.5 | .000008 | 000026 | | | 18.0 | 000341 | 000029 | 18.0 | 000517 | 000232 | | | 18.5 | 000333 | 000162 | 18.5 | | 00(198 | | | 19.0 | .000254 | .000246 | 19.0 | 000 136
.000 389 | :000310 | | | 19.5 | .000246 | .000202 | 19.5 | | 000017 | | | 20.0 | 000139 | 000155 | 20.0 | .000140 | 000017 | | | | | | | | | | Values are shown before and after suppression The next logical step was to examine the system performance with the dual controller system of equation (31) was implemented. Again, this research was done with Q=20 [I]. The system was divided such that controller one handled modes 1, 2, 4, and 5, as determined necessary to achieve acceptable pointing accuracies; controller two was initially specified as modes 3, 6, 7, and 8. The two controller model was run agains the eight mode truncated model to confirm the effectiveness of the method of suppression employed. These results can be seen in Table VII. With these results the additional residual mode (9, 10, 11, 12) were included in the model to check for any adverse effects due to these modes as was encountered in the earlier investigation of the single controller. In this case, the overall system retained the achieved stability as is seen in Table VIII. The desirable results that were achieved in this arrangement were that the system achieved the desired accuracies in the x and y directions within approximately 10 seconds. The associated time response printout to each of the above runs are presented in Tables IVathrough VIII. To obtain a more indepth understanding of the modal characteristics of the structure, a thorough study of the Table VII Evsten Eigenvalue Analysis - Two Controllers Modal Assignments | Cont | rol | 10 | r | #] | |------|------|----|---|-----| | 1 | , 2, | 4 | 5 | | Controller #2 3,6 7,8 Residual None # Overall System Eigenvalues | Before Tra | រោទ | formation | After Tr | ans | formation | |------------|----------|-----------|----------|-------------------|-----------| | -1.66818 | <u></u> | 5.62098 | 02837 | + | 5.67583 | | 59552 | + | 0.64991 | -1.57647 | + | 5.46629 | | 16098 | <u>+</u> | 1.24035 | -1.07376 | 4 | 5.57038 | | -1.36745 | + | 5.20773 | -1.51740 | ţ | 5.50617 | | -1.63542 | + | 5.66741 | -1.61266 | + | 4.90964 | | 96051 | + | 3.62505 | -1.61259 | + | 4.90962 | | -1.31648 | <u>+</u> | 5.26339 | 34269 | + | 1.16723 | | -1.16440 | + | 3.20916 | 50461 | +_ | 1.43353 | | -1.61266 | + | 4.90964 | 13144 | + | 1.46588 | | -1.61259 | + | 4.90962 | 18344 | + | 1.16990 | | 80770 | + | 0.74588 | 1.04342 | + | 3.42286 | | 30549 | + | 1.54735 | 83319 | +
- | 2.39507 | | -1.21882 | <u>+</u> | 3.83849 | 94909 | + | 2.84746 | | -1.35638 | + | 3.48462 | -1.26459 | + | 2.66181 | | 90125 | <u>+</u> | 2.71050 | -1.24619 | Ť. | 3.66533 | | 92979 | + | 2.99683 | -1.02693 | + | 3.42659 | # Table VIIa # Time Response - Two Controllers # Modal Assignment | Controller #1 | Controller #. | Residual | |---------------|---------------|----------| | 1,2,4,5 | 3 6 7,8 | None | | Befo | ore Transfor | mation | Α ^κ χ | er Transform | nation | |--------------|------------------|---------|------------------|-------------------|-------------------| | Time | Los-X | Los-Y | Time | Los-X | Los-Y | | •5 | .003649 | .001223 | • 5 | .003740 | .00148€ | | 1.Ó | .003929 | .000133 | 1.6 | .003442 | .000104 | | 1.5 | . 302813 | 000267 | 1.5 | .001271 | 000839 | | 2.0 | . 301770 | 000055 | 2.6 | 000259 | 000930 | | 2.5 | . 400959 | .000193 | 2.5 | 000850 | 000761 | | 3.0 | . 100267 | .006442 | 3.0 | 001076 | 000204 | | 3.5 | 303180 | .000622 | 3.5 | 000713 | .000086 | | 4.0 | 000215 | .000609 | 4.6 | 000331 | .000597 | | 4.5 | วงอีโ 30 | .000357 | 4.6 | .0001E5 | .000416 | | 5.0 | 000027 |
000002 | 5. 0 | رَ 21/000. | .006433 | | 5.5 | . 2000 62 | 000316 | 5.5 | .000290 | 000004 | | 6.0 | .969113 | 006477 | 6.0 | .560156 | 000079 | | 0.5 | .966111 | 000443 | 6.5 | .000055 | 000271 | | 7.0 | .000063 | 00(256 | 7.0 | 000624 | 000230 | | 7.5 | 000000 | CUC008 | ?・ シ | 666666 | 000111 | | ა.0 | 066679 | .000202 | ⊘. 0 | 5000002 | 500085 | | ₹.5 | 000123 | .000307 | ∂. 5 | 000060 | .000132 | | 9.0 | 000127 | .0002d7 | 9.0 | .000044 | .000011 | | 9.5 | 000089 | .00(169 | タ・ケ | 700058 | .000185 | | 10.0 | 000024 | .000013 | 10.0 | . 300044 | 000029 | | 10.5 | .005044 | 606126 | 10.5 | 000051 | .000092 | | 11.0 | .000090 | 50(189 | 11.0 | .000030 | 000075 | | 11.5 | .000100 | 00(180 | 11.5 | 000017 | 000001 | | 12.0 | .000072 | 00(110 | 12.0 | .000013 | 000044 | | 12.5 | .000022 | 000015 | 12.5 | .000020 | 000042 | | 13.0 | 000030 | .000070 | 13.0 | 000015 | .000031 | | 13.5 | 000064 | .000116 | 13.5 | .060038 | 000056 | | 14.0 | 000070 | .000115 | 14.0 | 000044 | .000084 | | 14.5 | 000049 | .000074 | 14. | .000040 | 000066 | | 15.0 | 000014 | .000015 | 15.0 | 000051 | . 0 00088 | | 15.5 | .000022 | 000040 | 15.5 | .000035 | 000064 | | 16.0 | .000044 | 000073 | 16.0 | 000034 | .000056 | | 16.5 | .000047 | 000076 | 16.5 | .000022 | 000040 | | 17.0 | .000032 | 000052 | 17.6 | 000006 | .000010 | | 17.5 | .000008 | 006013 | 17.5 | 000001 | .000003 | | 18.0
18.5 | 000014
000028 | .000023 | 18.6 | .000019 | 000031 | | | | .000047 | 18.0 | 000026 | .000045 | | 19.0 | 000030 | .00.050 | 19.0
19.5 | .000034
000040 | 000059
.000068 | | 19.5 | 000021 | .000036 | | | | | 20.0 | 000006 | .000011 | 20.0 | .000 038 | 000066 | Table 7111 # System Eigenvalue Analysis - Two Controller Modal Assignment | | | | | 3 | | | | | |-------------------|---|------------|----|-------------------------|------|-------------------|----------------------|---| | Control1
1,2,4 | | # 1 | C | ontroller #2
3,6,7,8 | | | tesidual
10,11,12 | | | | | Overa | 11 | System Eigenvalue | 2S | | | | | Before T | Frai | nsformatic | n | Afte | r Tr | ans | formation | | | .07015 | + | 13.96806 | i | .070 | 002 | + | 13.96821 | i | | .05713 | + | 10.34372 | Ĺ | .059 | 548 | + | 10.34651 | i | | .06320 | + | 10.94403 | Ĺ | . 060 | 051 | + | 10.94284 | i | | .05679 | + | 8.99021 | i | . 05! | 581 | + | 8.94227 | i | | 1.66583 | + | 5.62161 | i | . 028 | 337 | + | 5.67583 | i | | 1.36779 | + | | i | 1.57 | 647 | <u>+</u> | 5.46629 | i | | 1.61102 | + | 5.66711 | i | 1.55 | 483 | + | 5.60263 | i | | .82780 | + | 3.70680 | | 1.03 | 800 | + | 5.52416 | i | | .16560 | | 1.24134 | | . 82 | 055 | ± | 3.65895 | i | | .61372 | +++++++++++++++++++++++++++++++++++++++ | .61002 | | 1.61 | | + | 4.90964 | i | | 1.33748 | + | | i | 1.61 | | + | 4.90962 | i | | | + | 4.90964 | _ | .17 | | -
+
- | 1.20133 | i | | 1.61266 | + | | | . 37 | | -
+ | 1.09691 | | | 1.61259 | + | 4.90962 | | 1.21 | | _ | | i | | 1.27879 | + | 2.99798 | | | | + - | 3.89587 | | | 1.09500 | + | 3.92760 | i | 1.06 | | + | 1.47589 | i | | . 89774 | + | . 43082 | | | 284 | + | | i | | . 27864 | + | 1.55548 | | | 475 | + | 2,0,0- | | | 1.45666 | + | 3.31914 | | 1.42 | | + | 3.34208 | i | | . 74323 | + | 3.07171 | i | | 898 | + | 3,0- | i | | 1.03055 | + | 2.52592 | i | 1.06 | 814 | + | 2.63964 | 1 | Table VIII a # Time Response - Two Controllers #### Modal Assignment | Controller #1 1,2,4,5 | | Controller #2
3,6,7,8 | Residual
9,10,11,12 | | | |---|--|--|---|--|--| | Time | Before Tra | nsformation | After Tran | sformation | | | | Los-X | Los-Y | Los-X | Los-Y | | |
.50
1.05
2.05
3.05
2.05
3.05
4.05
5.05
6.05
7.05
8.05
9.05
10.05
11.05
12.05
10.05
11.05
12.05
12.05
13.05
14.05
15.05
16.05
17.05
18.05
17.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
18.05
1 | .003545
.003851
.002752
.001874
.001189
.000535
.000276
.000291
.000281
.000281
.000138
.000138
.000092
.000049
.000005
000044
000087
000110
000099
000075
.000075
.000075
.000075
.000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
000076
0000776
000076 | .001220
.000089
000341
000067
.000223
.000543
.000807
.000823
.000542
.000129
000452
000452
000452
00003
.000220
.000322
.000290
.000160
000132
000176
000176
000176
000176
000171
000074
.000115
.000110
.000069
.000041
000071
000073
000073
000073
000073
000073
000073
000073
000073
000073
000073
000073
000073
000073
000050
000046
.000050 | .003739
.003411
.001232
000251
000824
001032
000595
000161
.000310
.000235
.000189
000155
000120
000045
.000108
.000086
.00153
000029
000099
000057
000057
000057
000055
.000086
.000055
000055
000029
000027
.000098
.000099
000027
.000054
.000033
.000024
.000033
.000024
.000017
000050
.000001 | .001485
.000090
000885
001027
000845
000335
.000016
.000583
.000451
.000491
.000043
000257
000212
000054
.000150
000054
.000150
0000150
000013
000011
.000017
.000017
.000011
.000025
.000041
.000060
000113
.000033
000045
.000045
.000037
000020
.000037
000078 | | | 19.5 | 000020 | .000036 | 000064 | .000048 | | | 20.0 | 000004 | .000011 | .000033 | 000077 | | mode shapes was accomplished. These are displayed in Appendix A. Using the definition of the dot product of two vectors: $$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta_{AB}$$ The angles between the modal amplitude vectors were determined. This was done to determine if any of the modes lied on lines of action such that they could either be simply separated or arranged to minimize control efforts required by associating similarly aligned modes. As a result of this investigation, it became evident that the modal amplitude vectors subdivided into two orthogonal vectors (Table 9). With these orthogonal groupings, the system was run with controller one operating on modes 1, 4, 6, and 7; while controller number two drove modes 2, 3, 5, and 8. This grouping provided the best overall system response. The eigenvalues of this system is depicted in Table X while the associated time response is listed in Table Xa. The unique quality of this system is that it is inherently decoupled, in that the associated feedback gain matrices of one system (K and G) are orthogonal to the other system parameter matrices (B and C). This results in the fact the off diagonal coupling terms B_2 G_1 , K_2 G_1 , K_1 G_2 , G_2 are all equal to zero. dab e IZ #### Angular Relationships Between Modal Amplitude Vectors # Vector Dot Product $$\Theta_{17} = 33.23^{\circ}$$ $\theta_{23} = 64.33^{\circ}$ $$\varphi_2 \cdot \varphi_3 = .03281$$ $$e_{28} = 50.12^{\circ}$$ $$\mathbf{p}_4 \cdot \mathbf{p}_3 = 0.0$$ $$\phi_{2} \cdot \phi_{8} = 0.0$$ $$\theta_{47} = 80.37^{0}$$ $\theta_{53} = 85.25^{\circ}$ $$\theta_{58} = 84.38^{\circ}$$ This modal vector orthogonality while not a chance occurance, shows the importance of proper location of the sensors and actuators on the model. This system analysis to locate the sensors on the structure is a design tool which should not be taken lightly. The judicious location of sensors and actuators can reduce the system to a pair of uncoupled controllers requiring no system suppression; as a result, no degradation in the system response from the optimal gain values. By referring again to Table 7a, it is obvious that the time response of the system before suppression is superior to that after suppression. #### Modal Assignments | Controller #1 | Controller #2 | Residual | |---------------|---------------|------------| | 1,4,6.7 | 2,3,5.8 | 9,10,11,12 | # Overall System Eigenvalues | 05702 ± 10.3465407953 +
07011 ± 13.9681206983 ± | 10.20562
13.96671 | |--|----------------------| | 07011 + 13.9681206983 + | 13.96671 | | | | | 06244 + 10.9433204954 + | 10.93907 | | 04388 <u>+</u> 8.9975205750 <u>+</u> | 8.96044 | | -1.51751 <u>+</u> 5.50653 -1.61259 <u>+</u> | 4.90962 | | -1.61639 <u>+</u> 5.41038 | 4.97987 | | 27191 <u>+</u> 1.20414 -1.54666 <u>+</u> | 5.50147 | | 43310 <u>+</u> 1.09745 | 5.40713 | | 83306 <u>+</u> 3.65462 -1.4563? + | 5.53310 | | -1.22213 <u>+</u> 3.06310 | 4.45319 | | -1.42714 <u>+</u> 5.5889754310 <u>+</u> | 3.63429 | | -1.58679 ± 5.40001 -1.06302 ± | 3.29105 | | 71819 <u>+</u> 1.2730436782 + | 1.13101 | | 36226 <u>+</u> 1.5190926965 <u>+</u> | 1.18851 | | -1.06186 <u>+</u> 2.5001543999 <u>+</u> | 3.85085 | | 73434 ± 3.05232 $-1.25745 \pm$ | 3.65065 | | -1.43137 <u>+</u> 3.3565262836 <u>+</u> | 1.31448 | | -1.08042 ± 3.8816234492 ± | 1.51727 | | $-1.61259 \pm 4.9096273034 \pm$ | 3.04703 | | -1.61266 ± 4.90964 -1.09035 ± | 2.51427 | # Table Xa # Time Response - Two Controllers # Modal Assignments | Controller #1 1,4,6,7 | | Control 2,3 | | Residual
9,10,11,12 | | | | |--------------------------------------|--|--|--|---|--|--|--| | <u>Bef</u> | ore Transfor | mation | Afte | After Transformation | | | | | Time | Los-X | Los-Y | Time | Los-Z | Los-Y | | | | 1.0
1.5
2.0
2.5
3.0 | .003596
.003360
.001491
.000163
000598
000939 | .001203
000289
001148
001043
000703
000256
.000278 | .5
1.0
1.5
2.0
2.5
3.0 | .003751
.005080
.002820
000045
000765
001248
001542 | | | | | 4.0
4.5
5.0
5.5
6.0 | 000198
.000143
.000216
.000143
.000035 | .000628
.000625
.000376
.000054
.000200 | 4.0
4.5
5.0
5.0
5.0 | 000518
.000415
.000402
.000324
.000277 | .000484
.000808
.000489
.000144
00006 | | | | 6.5
7.5
8.0
8.5
9.0 | 000039
000050
000013
.000631
.000049 | 000304
000263
000136
.000004
.000100 | 6.5
7.0
7.0
8.5
8.0 | 000048
000219
000093
000012
.000017
.000085 |
00336
00384
000201
000029
.000084
.000167 | | | | 9.5
10.0
10.5
11.0 | 000008
000037
000041
000026
000002 | .000095
.000040
000010
000041
000046 | 9.5
10.0
10.5
11.0
11.5 | .000067
000021
000051
000042
000036 | .000150
.000061
000006
000044
000064 | | | | 12.0
12.5
13.0
13.5
14.0 | .000021
.000030
.000021
.000006
000007 | 000032
000011
.000005
.000013
.000016 | 12.0
12.5
13.0
13.5
14.0 | 000002
.000037
.000038
.000020 | 000048
000013
.000007
.000016
.000019 | | | | 14.5
15.5
16.0
16.5
17.) | 000016
000016
000008
.000002
.000006 | .000011
.000005
.000000
000003
000005 | 14.5
15.0
15.5
16.0
16.5
17.0 | 000013
000024
000017
000005
.000004 | .000012
.000002
000003
000004
000003 | | | | 17.5
18.9
18.5
19.3
19.3 | .000007
.000002
000003
000004
000003 | 00003
00001
.00000
.00002
.00003 | 17.5
18.0
18.5
19.0
19.5
20.0 | .000011
.000005
000001
000004
000005 | 000001
000001
000001
.000000
.000001 | | | #### Conclusions During this study it was determined that system response can be greatly reduced through the implementation of an additional controller. As became evident in the suppression portion of the research, the designer can greatly reduce the computational requirements through the use of structural symmetry and sensor locations. By assigning modes to be controlled according to orthogonal grouping of their modal ampitudes associated to each sensor location, the system will be inherently decoupled as earlier explained. In all of the test cases run, the residual modes were not adversely affected by any of the control or transformation techniques applied to the overall system. As a result, including only the lower frequency modes as controlled modes, has proved valid for the modeled system. The capability to control the system may be increased through additional sensors, but it must be noted that the system will not be able to suppress more modes than sensors as was noted in the transformation section. #### Recommendations The primary thrust of this investigation was toward the evaluation of a system which implemented two centralized controllers. The results presented indicate the mathematical advantages of applying this technique to the model chosen. The importance of evaluating the entire modal analysis became evident through the analysis of the modal amplitude vectors. This single area has presented itself as a key to real world application of decentralized controllers. The importance of the location of the sensors and actuators that are used to control the structural motion is an important design tool in achieving desired system response. The next logical step in the study of this control problem would be the experimental evaluation of the techniques applied in this study to determine the feasibility of the implementation of the system described. This would include the evaluation and determination of computing capabilities required to achieve the results which have been put forth in this paper. #### Bibliography - Balas, M. J., "Active Control of Flexible Systems", AIAA Symposium of Dynamics and Control of Large Flexible Spacecraft, Blacksburg, June 14, 1977. - 2. Sesak, J. R., "Control of Large Space Structures "ia Singular Perturbation Optimal Control", A:AA Conference on Large Space Plitforms: Future Meeds and Capabilities, Los Angeles California, September 27-29, 1973. - 3. Coradetti, T., "Orthogonal Subspace Reduction of Optimal Regulator Order", General Dynamics/Convair Division, San Diego, California. - 4. Strang, G., Linear Algebra and Ita Applications, New York: Academic Press, 1976. - 5. Calico, R. A. Jr., and Janiszewski, A. M., "Jontrol of a Flexible Smellite Via Elimination of Control Spillover," Proceeds ThirlyPI/AIAA Symposium on Large Space Structures, Blacksourg, Virginia, June 1981. - 6. Kleinman, D. L., A <u>Description of Computer Programs for Use in Linear Systems Studies</u>. The <u>University of Connecticut School of Engineering TR-77-2</u>, Storrs, Jonnecticut, July 1977. - 7. D'Azzo, J. J. and Houpi. C. H., Linear Centrol System Analysis and Design: Conventional and Modern, New York: McGraw-Hill Book Company 1975. Appendix A NASTRAN Analysis # Frequency and Mode Shapes # Nominal Case | ω ₁ = | 1.370 | ω ₂ = | 1.467 | ω ₃ = | 2.965 | ω ₄ = | 3.502 | |------------------|---|------------------|--|-------------------|---|-------------------|---| | φ1 = | -2.471E-01
4.279E-02
1.451E-06
-1.963E-02
3.398E-02
-7.213E-02
-3.607E-02
4.347E-02
4.397E-02
5.296E-02
4.397E-02 | φ ₂ = | 3.999E-01
2.309E-01
-1.489E-01
8.329E-02
4.808E-02
5.813E-02
7.090E-02
2.253E-02
-4.721F-02
4.936E-02
-4.722E-02 | ⊅ 3 = | 6.368E-02
3.678E-02
4.000E-01
1.984E-01
1.145E-01
2.010E-01
1.548E-01
6.804E-02
9.782E-02
1.363E-01
1.000E-01
9.784E-02 | φ ι , = | 2.746E-02
-4.758E-02
-2.249E-05
-1.718E-01
2.977E-01
-6.817E-05
-2.512E-01
3.436E-01
-8.190E-02
-1.718E-01
3.894E-01
8.192E-02 | | ω ₅ = | 3.848 | ω ₆ = | 5.150 | ω ₇ = | 5. 676 | ω ₈ = | 5.680 | | φ5 = | -8.783E-02
-5.070E-02
-1.299E-01
3.095E-01
1.786E-01
-3.514E-01
2.866E-01
1.224E-01
1.139E-02
2.494E-01
1.868E-01
1.140E-02 | φε = | 1.353E-05
1.218E-11
3.402E-11
-2.041E-01
3.535E-01
-6.057E-06
-2.041E-01
-3.535E-01
1.086E-04
4.082E-01
6.802E-10
5.065E-10 | Φ7 = | -2.661E-02 4.607E-02 3.302E-05 3.374E-02 -5.844E-02 3.231E-05 2.733E-02 -5.481E-02 -4.913E-01 3.382E-02 4.908E-01 | ⊅ g = | -2.994E-02
-1.731E-02
8.784E-02
4.071E-02
2.360E-02
3.554E-02
2.742E-02
2.798E-02
-4.875E-01
3.799E-02
9.810E-03
-4.879E-01 | | (1) 9 = | 8.940 | ω10 = | 10.303 | ω ₁₁ = | 10.923 | ω ₁₂ = | 13.966 | | 49 = | 9.907E-02
5.720E-02
1.729E-01
1.076E-01
6.213E-02
-4.953E-01
-1.679E-01
-2.198E-01
-1.110E-02
-2.743E-01
-3.554E-02
-1.109E-02 | Ф10 = | -3.390E-03
5.850E-03
-1.505E-05
-2.286E-01
3.960E-01
4.964E-05
3.783E-01
4.554E-02
-1.471E-02
-2.286E-01
-3.049E-01
1.472E-02 | φ ₁₁ = | 6.370E-02
3.678E-02
3.588E-02
-2.401E-01
-1.385E-01
-2.605E-01
-8.626E-02
3.944E-01
6.970E-03
2.984E-01
-2.719E-01
6.971E-03 | Φ ₁₂ = | 3.206E-02
1.851E-02
6.438E-02
-4.026E-01
-2.324E-01
-1.305E-01
3.204E-01
-1.587E-01
-9.278E-03
2.272E-02
3.568E-01
-9.281E-03 | # Frequency and Mode Shares # Perturbed Case | ω ₁ = | 1.342 | ω ₂ = | 1.665 | ω ₃ = 2.891 | ω ₄ = | 2.957 | |------------------|---|-------------------|--|--|-------------------|---| | φ1 = | -3.444E-01
5.964E-01
2.330E-06
-3.107E-02
5.379E-02
-1.111E-05
-5.079E-02
6.518E-02
6.380E-02
-3.101E-02
7.656E-02
-6.379E-02 | φ ₂ = | 5.429E-01
3.135E-01
-1.990E-01
1.263E-01
7.292E-02
9.756E-02
1.098E-01
4.162E-02
-6.728E-02
7.425E-02 | -4.421E-02
-2.844E-02
3.788E-01
3.125E-01
1.305E-01
6.519E-02
2.727E-61
1.274E-01
1.371E-01
2.466E-01
1.726E-01
1.372E-01 | ? ц = | 5.726E-02
-9.915E-02
-1.466E-04
-1.760E-01
3.046E-01
-7.205E-05
-2,368E-01
3.409E-01
-9.157E-02
-1.759E-01
3.771E-01
9.149E-02 | | ω ₅ = | 3.398 | ω ₆ = | 4.205 | ω ₇ = 4.662 | ωg = | 4.755 | | φ ₅ = | -1.369E-01
-7.906E-02
-3.441E-01
1.621E-01
9.355E-02
-4.969E-02
1.620E-01
7.369E-02
-7.571E-02
1.444E-01
1.037E-01
-7.570E-02 | Φ5 = | 2.706E-05
2.487E-11
6.986E-11
-2.041E-01
3.535E-01
5.160E-06
-2.041E-01
-3.535E-01
1.003E-04
4.082E-10
7.861E-10
6.086E-10 | 5.571E-02
-9.647E-02
-2.246E-05
-3.440E-02
5.960E-02
-2.905E-05
-2.882E-02
5.644E-02
4.873E-01
-3.447E-02
5.318E-02
-4.872E-01 | ¢8 = | -7.584E-G2
-4.380E-02
1.837E-01
4.701E-02
2.722E-02
9.781E-02
3.671E-G2
3.245E-02
-4.698E-01
4.655E-02
-4.698E-01 | | ω9 = | 8.539 | ω ₁₀ = | 9.251 | $\omega_{11} = 10.285$ | ω ₁₂ = | 12.905 | | 49 = | 1.445E-01
8.347E-02
2.702E-01
2.125E-01
1.228E-01
-3.266E-01
-1.414E-C1
-3.096E-01
-1.504E-02
-3.389E-01
-3.228E-02
-1.503E-02 | φ ₁₀ = |
-5.777E-03
9.965E-03
-3.372E-05
-2.242E-01
3.883E-01
4.517E-05
3.846E-01
3.681E-02
-1.184F-02
-2.241E-01
-2.147E-01
1.1857-02 | φ ₁₁ =
1.594E-01
9.205E-02
2.580E-01
-1.516E-01
-8.758E-02
-3.117E-01
-1.619E-01
3.311E-01
9.133E-04
2.057E-01
-3.058E-01
9.153E-04 | \$12 = | 8.369E-02
4.833E-02
1.587E-01
-4.059E-01
-2.343E-01
-1.611E-01
2.996E-01
-1.419E-01
-8.200E-03
2.687E-02
3.304E-01
-8.203E-03 | g^{T} b Matrix | | Actuators | | | | | | | |------|-----------|--------|--------|--------|--------|--------|--| | Mode | 1 | : | 3 | 4 | ر' | ۴, | | | . 1 | 0.044 | -0.044 | -0.067 | -0.023 | 0.023 | 0 067 | | | 2 | 0.069 | -0.069 | -0.01, | 0.112 | 9.112 | -0.017 | | | 3 | -0.046 | -0.046 | -0.271 | 0.077 | 0.077 | -0.271 | | | 4 | 0.248 | -0.249 | ~0.060 | 0.139 | -0.189 | 0.060 | | | 5 | 0.351 | 0.351 | -0.049 | 0.156 | 0.156 | -0.049 | | | 6 | 0.289 | -0.289 | 0.289 | -0.289 | 0.289 | -0.289 | | | 7 | 0.049 | -0.049 | -0.369 | -0.320 | 0.320 | 0.369 | | | 8 | -0.069 | -0.069 | 0.299 | 0.365 | 0.365 | 0.299 | | | 9 | 0.231 | 0.231 | -0.250 | -0.229 | -0.229 | 0.250 | | | 10 | 0.317 | -0.317 | -0.150 | 0.167 | -0 167 | -0.150 | | | 11 | 0.220 | 0.220 | -0.146 | 0.145 | 0.145 | -0.146 | | | 12 | 0 114 | 0.114 | -0.013 | 0.025 | 0.0248 | -0.913 | | Appendix B Main Program Listing 6 CCC ``` PROGRAM THESIS REAL FODE (2,12), X1(46), INIT(4,12), X0(41) REAL FSST(12,12),RIG(12,12),AB52(12,12),4KC2(10,12),GAIN2(12,11) REAL DIJEAT1(4 ,43),EAT(4,,4.),ERT2(4,,4/) REAL ACT (12,12), ST (12,12), 78TA, 4(12) REAL KT2(12,12), OST(12,12), CSTR(12,12), TRT(12,12) REAL FT (12,12), TGG (12,12), CTT (12,12), RT1(12,12) REAL AC(12,12),0(12),PHIS(12,12),CC(12,12) REAL CAT(12,12),#3G(12,12),S#T(12,12),8RG(12,12),KOR(12,12) REAL FAUM(-.,4), GAIN(12,12), 803(12,12), 4KC(12,12) REAL KOS(12,12), 35G(12,12), CUB(12,12), CT(12,12) KEAL V(12,12), SING(12), IR (12,12) REAL CTC3(12,12), POB(12,12), ACG(12,12), KT1(12,12) REAL XTR(12,12), STOR(12,12), TOL, TEN(12,12), AA, 88, OA (14,12) REAL PST (12,12), T1 (12,12), TT (12,12), R(12,12), R1 (12,12) REAL FO(12,12), PHI(12,12) INTEGER N, HC, NS, 123, IC (12), HC2, N22, N32, MM, L, P, N, SKIF, D2C, £ INTEGER 1,1EN, J, 7Z, N2, 0, TAPE, 15(12), NACT, 18(12) COMPLEX M1(12),7(,.) REAL KOS(12,12), KOD(12,12), WORK(4),41) COMMON/MAINI/NOIM, NDIM1, TEN COMMICHAMILMAINEA, NDAI, WORK COMMON/MAINE/STOF D CM PONTE AT NEXT XTT COMMCNINGUT/TAPE SOMMOR/NUM/10, IS, IR, NO, NS, NR. CDMMON/SAVE/T(11), TS(10) NDIM1=13 ND A= F ND A1 = 33 0 = TARFEC PRINTA, 'ENTER AD, MS, NE, MACT, MEN, ZETA> 1 READ , NO, NS, NF, NACT, NSEN, ZETA PRINT, . PRINTS, " ENTER THE ", NACT, " LLEMENTS FOR EACH PHIA! M= NO +1-5 +4R DO 5 I=1, N PRINT, "ENTER PHIA ",I,"> " READ(6,1)(FHI (I,U), J=1, h, CY) CONTINUE PRINT', ' PRINTS, " LNIGH THE ", WSEN, " ELEMENTS FOR EACH FHIS!" 00 5 I=1,N PRINTA, FENTER PHIS 1,1,1>1 READ(?,')(FH15(1,J),J=1,K55K) BUNETHOC DO 4 I=1,N PRINTE, * ENTER OMEGA > 1 READ (\varepsilon, *) W(I) D(I) = -2^{1} Z \in TA^{1} M(I) CONTINUE WCS VE HI DASH SHOTTING LATTINE ROW 1 IS X , FUN 2 IS X DOT , ROW 3 IS E, FOW 1 IS E DOT ``` ``` C C 00 19 I=1,2 19 READ(E, *) (MODE(I, J), J=1, N) 93 21 I=1,4 21 READ(\epsilon, *) (INIT(I, J), J=1, N) 293 CONTINUE DEC= . PRINTS, IF TIS IS A DECUUPLED RUN ENTER 1 ELSE ENTER 1 >1 READ DEC PRINTA, DECOUPLE = 1,020 IF (0.E7.2) THEN ENTER NO, NS, VR > 1 PRINT*, * READ-, NO, NS, NR ENDIF PRINT*, * ENTER THE *, NC, * CONTROLLED MODES > * READ*,(10(1),I=1,NO) PRINT*,* *,(IC(I),I=1,kC) PRINT", "ENTER THE ", NS, " SUPRESSED MODES > " READ^{+}, (is (i), i=1,NS) PRINTA, *,(IS(I),I=1,kS) IF (NF.NE.:) THEN PRINTS, * ENTER THE *, NR, * FESTOJAL MODES > * READ (IR(I), I=1, NR) PRINT*, * /,(IR(I),I=156R) ENCIF NC 2= 2* NC NR 2= 2* 4R NS 2=.15* 2 N2=2 N CALL FORMXG(XG, INIT) IF (DEC.EQ.1) CALL FORMX1(XO, INIT) M= 2" (102+NS2+NR2 IF (DEC. EC. 1) M= 2*NO2+2*N52+1 R2 INITIAL CONDITIONS! CALL FRNT (XC, M, 1) PRINTY, * TO FRINT ALL OF THE MOTRICLES ENTER 1, ELSE ENTER. READ , O IF (0.50.1) THEN PRINTE, ! THE A COUNTROL MAISIN IS! CALL FORMA (AC, D, W, NO, NC2, IC) CALL FRNT (AU, N.C.2, .162) PRINTS, THE B CONTROLLED FATRIK IS ! CALL FOFMB(EU, FHI, NO, NC2, MACT, 13) CALL FENT (SC, 1 C2, NACT) PRIMIT, ! THE C CONTROLLED MAIRIX IS! DALL FORMS (OC, PHIS, NO, NO2, NEEN, ID) DALL PRNT(CC, NSEN, NC2) PRINTS, * THE / SUPRESSED TATEIX IS* CALL FORMA (AC, D, W, NS, NSE, IS) CALL FART (AC, NS2, NS2) PRINT', THE E SUPRESSED TAIKIX IS! CALL FORMB(60, FHI, N3, NS2, N/C1, IS) CALL F 187 (SC , 1823, SAST) PRESTANTAL O EMPRESSES ANALY 131 CALL FOREC((C) PHIS, NS, 1,52, 1,52 N, 15) DALL PENT (CO, 1.5 EN, 452) ``` ``` PRINT", " THE A RESIDUAL MATRIX IS" CALL FORMA(AC, D, M, NT, NO2, IF) DALL PRNT (AC, KRZ, NRZ) PRINT', ' THE " RESIDUAL MATRIX IS' CALL FORMB(GC, FHI, NR, NRS, NACT, IR) CALL FRAT (BC, NF2, NACT) PRINTY, " THE C RESIDUAL MATRIX IS" CALL FORMO(CC, FHIS, NR, NRZ, MSEN, IR) CALL PRNT (CC, NSEN, MR2) 0 = f: ENDIF CALL FOR (BC, FHI, NC, NC2, NACT, JC) CALL TER (BT, BC, NC2, NACT, 1,2) CALL MMUL (EG, ET, NGZ, NACT, NCZ, SAT) CALL FORTO (CC, FHIS, NC, NO2, NEEN, ID) CALL TER(CT,CC,NSEN,NC2,1,2) CALL MMUL (CT, CC, NG2, NSEN, NC2, CTCC) 121 CONTINUE 77 =: PRINTS, FENTER THE DIAGONAL TERM FOR THE WEIGHTLAG MATRIX C >1 READY,4A PRINT', 44 PRINTY, FENTER THE OBSERVER WEIGHTING DIAGONAL TERM > 1 READ -, RE PRINTE, 68 DO 161 I=1, NC2 00 150 J=1,NG2 IF (I.FO.U) THEK A := (U, I) A \cap 28 = (L, I) 2 CD ELSE \Omega(I,J) = 903(1,J) = ENCIF CONTINUE 18. CONTINUE 11 IE == TOL=. 1 CALL FORMA (AC, D, W, NO, NO2, IC) CALL FOLD (NC2, AC, SAT, OA, CAT, AES, FOL, IER) 4F (77,EQ.) 1Hell PRINTY, THE RIGATTI SOLUTION OF AD + ROST PRINTY, * ILEE *, IER CALL FRAT (CAT, NC2, NC2) ENCIF IEP= : 3 TOL= . 1 OALL TER (ACT, #C, NG2, NG2, 1,2) CALL PRIC(RC2,/CT,CTCC,CUR,FUB,403,TOL,IER) CALL MMUL (CC, FCB, ASEN, NC2, NC2, K(1) IF (77.19.1) THEN CALL MMUL("T1, TRT, P, P, NSEN, STOR) CALL TYUL (STOT, KT1, P, WS: 4, CL, KT2) BALL MIUL (IF , K) 2, (Bah, P, 462, K) 2) _40TF DALL TER (KUS, KT1, NSEN, ND2, 1, 2) THE K SAIN MOTHLY ``` ``` CALL FRAT (KCB, NC2, NSEN) CALL MUUL (KCB, CD, NC2, NSEN, NC2, KCC) CALL FORMC(CC, F413, NS, h52, h52h, I3) CALL PMUL(KCB, CC, MCZ, NSEN, NSC, KCS) CALL FORMO(CC, FHIS, NP, NR2, NSLN, IR) CALL MMUL(KOR, OC, NO2, NSEN, NK2, KOR) DO 87 I=1, NC2 00 87 J=1,402 εì AKC(I,J) = AC(I,J) - KCC(I,J) 5.4K+524+5CH+30N=Mb IF (DEC. ED. 1) MH=2" NC2+2"NS2+NK2 00 91 I=1, MM DD 91 J=1,MM 91 MLDM(I, J) = ... DD 92 I=1,NC2 00 92 J=1,NC2 92 M&JM(2,J)=#EG(3,J) CALL FORMB(FC, FHI, NC, NC2, N/CT, IC) CALL TEF (BT, BC, NCZ, NACT, 1, 2) CALL MMUL (PT,CAT, NACT, NC2, NC2, GAIN) DD "" T=1,NACT DO 77 J=1,402 77 GAIN (I, J) =-GAIN(I, J) CALL FMUL (EC, GAIN, NC2, NACT, (C2, 303) CALL FORMBURC, PHI, NS, NS2, NAUT, 13) CALL MAUL (BC,GAIN, NG2, NACT, NL2, RSS) CALL FORMB (BL, FH1, NK, NH2, NACT, 12) CALL MMUL (SC,G/In, NR2, NACT, NC2, 3R3) T= SwitCS ΠΟ 93 I=1,NC2 DO 93 J=1,402 93 4AJ4(I, (J+aC2)) = 366(I, J) DO 9: I=1,102 DD 9. J=1,102 HAJM((I+NO2),(J+HO2)) = AKU(I,J) 94 DO 95 I=1,602 DD 90 J=1, NS2 M4 JM((I+h62),(J+L)) = KC5(I,J) 95 00 95 I=1,NS2 00 95 J=1,402 11 , ([+1]) PLAN)=9SG(1,J) .4A JH ((L+I), (J+!32))=55G(1,J) 45 CALL FORMAL AC, J, N, NS, NS2, IS) DD 97 I=1,NS2 00 9" J=1,852 97 MAJM((I+L),(J+L))=AC(1,J) M=L+1152 CALL FORMA(IC, D, W, NR, NRZ, AF) 00 3 I=1, NF2 00 3 J=1, HF2 3! 46 J4((1+4),(J+1)) = 00 31 I=1,N+2 00 31 J=1,402 L (('Z+Y)) ML Ar) =Br.G(_,J) * CUM((C+Y),(U+102)) = 3/C(2,U) 31 MAUM((J+NO2), (J+Y)) = KOR(U, J) IF(DEC.EQ.1) THEM ``` 15.64° ``` DO 4 : I=1, NR2 DO L J=1,1C2 MAJM((I+M),(J+MG2)) = U.1 = (U, (M+I)) H U A H 46 MAJM((J+NC2),(I+Y)) = L... CALL FORMA (AC, C, W, NS, NS2, IS) CALL FORMB(EG, PHI, NS, NS2, NACT, IS) CALL TER(BY, SU, NS2, NACT, 1,2) IF (77.EQ. .) CALL MMUL (80, 81, NS2, NADT, NS2, BSBT) IER=: TOL= . 1.11 CALL MRIC(NS2, AC, RSRT, GA, RIC, AB32, FOL, IER) CALL TER (ACT, &C, NS2, NS2, 1,2) CALL FORMC(CC, FHIS, NS, NS2, NSEN, IS) CALL TFR (CI, CC, NS EN, NS2, 1, 2) CALL MMUL (CT, CC, NS2, NSEN, NS2, CTCC) CALL MRID (RS2, AUT, OTCC, BUB, FCE, ADS, FDL, IER) CALL TER(AKC2, ACG, NS2, NS2, 1, 2) M= 2*NC2 DO 41 I=1, NS2 DO 41 J=1,NS2 MAJM((Y+1),(Y+J)) = ABG2(I,J) 41 MAJM((M+NS2+I),(M+NS2+J)) = AKO2(I,J) CALL FMUL (CC, PCB, NSEN, NSE, 152, KT1) CALL TER(KOB, KT1, ISEN, NS2, 1, 2) KOB IS MOW THE K GAIN MATRLY FOR SYSTEM 2 C 4= 4+452 CALL FORMO (CC, FHIS, NC, NC2, NS: N, IC) GALL MUUL (KCB, CO, NS2, NSEN, NS2, KOO) DD 42 I=1,NS2 DO 43 J=1,1,02 4.2 MAJM((Y+1),J) = KCC(I,J) CALL MUL (BT, KIC, MAST, NS2, NS2, GAIN2) DO 73 I=1,6467 DD 73 J=1, NS2 70 GAIN2(I,J) = -GIIN2(I,J) IF (77.EQ. 1) THEN CALL MMUL(TI,GRID2,E,NACT, 182,STOR) CALL MYUL (R1, STUR, E, C, NS2,) EI) CALL MMUL (Ti, TeN, NACT, E, NS2, EAIN2) ENCIF CALL FORTB (EC, FHI, NO, NC2, NACT, 13) CALL MUL (90, GAINE, NO2, NACT, NS2, 303) M= NC 2* 2 DO 43 7=1,1:02 DO 43 J=1,NS2 MAJM(1,(M+J)) = POG(1,J) 43 MA \cup M(I_{\bullet}(N+NS2+J)) = BCC(I_{\bullet}J) CALL FOR UB (EC, FHI, HS, NSE, N; CT, 15) CALL MMUL (EC, GAIN 2, MS2, NACT, KS2, BS3) DD → . I=1,N52 00 4% J=1,852 MAJM((M+1), (N+NS2+J)) = BSG(2,J) 44 4= 24 102+2+ NS2 DO 15 T=1,482 35 4 - J=1,402 MAJM((++1),J) = BNG(I,J) ``` ``` MAJM((M+1), (J+1,G2)) = BRG(1,J) 4;5 MAJM((NCZ+J),(M+I)) = KOR(J,I) CALL FORMB(EC, FMI, NK, NF.2, NECT, IR) CALL MYUL (60, GAIN2, NR2, NACT, MS2, BR3) CALL FORMC(CC, FHIS, NR, NR2, NSEN, IR) CALL MMUL(KCP, CO, 4S2, NSEN, NEZ, KOR) DD 45 I=1, NF2 DD 45 J=1, NS2 MAJM((M+1), (J+2*h02)) = BRG(1,J) MAJM((M+1), (J+2*NC2+NS2)) = EKG(1,J) 46 MAJM((2*NC2+NS2+J),(M+I)) = KCR(J,I) CALL FORMA (AC, E, M, NR, NR2, IF) DO 47 I=1, NF2 DO 4: J=1,NK2 47 MAJM((M+I),(M+J)) = AC(I,J) ENDIF IF (DEC. ED.1) MM= 2+NC2+2*NS2+NR2 C C C FORMS E TO THE AT C С IF (77.EQ.1) THEN PRINT', THE SUPRESSED ANALYSIS IS CALDULATED! ENDIF PKINT*, * FOR THE TIME RESPONSE AND EIGENVALUE ANALYSIS LATER PRINTA, 4 FOR ONLY THE ERGENVALUE ANALYSIS ENTER 2 >1 KEAD ', SKIP IF (SKIP.ED.2) THEN GOTO 21: ENCIF D7= f. (1 TOL= . T "1 DO 93
I=1, MM 30 93 J=1,88 = (U, E) \ 1T \Delta = ... \Xi \Delta T1(I,I)=L_{\bullet} MORK (I, J) =MAUM (I, J) FOT 48 ZAT(I,J) = WORK(I,J) 4=1 LL =1 112 CONTINUE D3 11: 1=1,1'M 00 11' J=1, MM EAT2(1,J) = EAT1(1,J) + WOEK(1,J)/L_ 11! H= H+1 . . LL=LL"M 3.8 DO 111 I=1, hm 00 111 J=1,1M IF (ABS (BAT2 (1, J) - EAT1 (1, J)), GT. FOL) THEN DO 113 L=1, FM 00 113 K=1,FM #4 T1 (L, K) = LAT2 (L, K) IATO(L_{\bullet}K) = MUFK(L_{\bullet}K) 113 CALL WITHEFF (EAT 2) EAT o might of to be a solder Kon o IE) GJTO 112 INDIF ``` CPT=u ``` 111 CONTINUE C C C THE SCLUTION TO E TO THE AT IS IN EATS C THIS FLOOK DETERMINES THE LUS AND PRINTS THIS VALUE EVERY 22 SEC C C IF (DEC. EG.) THEN GALL' FORMXO(XU, INIT) EL SE CALL FORMX1 (XC, INIT) ENDIF CALL TIME (EAT2, HM, DT, X1, X0, NCDE, EAF, NOPK, DLC) CONTINUE 211 C C C EIGEN VALUE ANALYSIS SECTION CALL EIGRE (MAJM, MM, 4L, 7, Z, TER, NOIM, WORK, IER) C C PRINT, . CVEFALL SYSTEM EIGEN VALUES! PRINTS, 16R = ', IER DO 61 I=1,4M PRINT*, * 65 1,7(I) PRINT', " CALL EIGRF (ABG, NC2, NDIM, L, W1, XEN, ND14, STOR, IER) PRINT*, * EIGENVALUES OF AD + BOG! PRINT', " IER = ',IER 00 9 I=1,402 PRINTS, 9: *,W1(1) PRINTE, * EIGENVALUES OF AC - KC3 * CALL SIGRE(AKC, NO2, NDIM, L, M1, YEN, NDIM, STOR, IER) PRINTS, 154 = ',IER DO SE I=1, hC2 PRINT*, * 66 ',W1(I) IF (DEC.ED.1) THEN PRINTA, FIGENVALUES OF A+ EG SYSTEM 21 CALL EIGRE (A 3GE, 432, MDIM, C, WI, TEM, MDIM, STOR, IE) PRINT*, * 125= 1,1EK 00 6/ I=1,NS2 PRINT", " 67 ',W1(I) IER= PRINTA, * EIGENVALUES OF A - KO SYSTEM ?! CALL FIGRE (AKC2, NS2, NDIM, , WI, TEN, NDIM, N, 189) PRINTE, 1 IEF 1, IER DD 53 I=1, NS2 66 PRIMTE, ', W1 (I) ENDIF IF (77.EQ. 1) GOTC 2: CALL FORMO (CC, FHI3, NS, NS2, NSEN, IS) CALL IFR(CST,CC,USEN,NSZ,1,2) 00 1 (I=1, NS 90 1 J=1,1351 Y(I, N=CET(I,J) 1 1 OKEL 13VDF (V) 1111) N3 , N5 : v - , 1 : N , ND1M , -1 , 51 nG , S' CK , I c K) PRINTS, LSVEF IER= ", IER P= NREN ``` ``` IF (F.LT.1) THEN DD 1 1 1=1, NSEN 101 TR(I,1)=V(I,hSEN) P= 1 EL SE DO 139 I=1, NSEN DO 199 J=1,F 199 TR(I,J) = V(I,(J+NS)) ENDIF PRINTS. TRANSFORMATION BATRIX! CALL FRN1 (TF, NSEN , P) CALL MMUL (OST, TR, NS2, NSEN, P, CSTR) PRINT', CSTA TRA CALL FRHT (DSTR, NS2,P) PRINT+, " THE SINGULAR VALUES! CALL FENT (SING , NS. 1) CALL TER(TRI, TR, NSER, P, 1, 2) CALL NAUL (TET, TR, P, NSEN, P, F1) CALL GHINV(F,P,RT,RT1,J,TAFE) CALL FORTO(CO, FHIS, NO, 402, NSEN, ID) CALL TEF (CT, CC, HSEN, NC2, 1, 2) CALL MMUL (TRI, CO, P, NSEN, NC2, TCC) CALL MMUL (CT,TF, GC2, NSEN, P, CTT) CALL MMUL (CTT, FT1, NC2, F, P, STUR) CALL MMUL (570 , TOC, NC2, P, NC2, CTCC) 77=1 IF (DEC. EG. 1) THEN CALL FORMB(EC, FHI, NC, NCZ, NACY, 13) 1=1,40 93 7 DO 7 J=1,NACT 71 V(I, J) = BO((I+NC), J) CALL ESVOF(V, NOIM, NO, HSEN, TEN, NOIM, -1, SING, STO, , LER) LSVDF FOR CONTROL SPILL OVER 18- = 1,182 PRINT, C= NACT - NC IF (E.LT.1) THEN DO 71 I=1, NACT 71 T1(I,1) = V(I,hACT) E=1 ELSE UD 72 I=1, WACT 00 72 J=1,E 72 T1(I,J) = V(I,(J+40)) ENDIF PRINTS, *XIGTAM NCITANADARAT S METRYS PRINT*, . . CALL FRNT (71, NACT, E) PRINT*, * PRINTA. . THE SINGULAR VALUES OF BI! CALL FRNT (SING, NC, 1) CALL TER (TT, T1, NAST, E, 1, 2) SALL MMUL (TT, 11, E, RACT, E, F) CALL GMINV(E,E,R,R1,J,T4PE) CALL FORNB(FC, FHI, N3, NS2, 1/07, IS) Of LL *4UL (30,11,432,4461,2,901) EALL MAUL (1996 my words Is as a factor) DALL IMUL (PEST, TT, NG2, E, NACT, BST) CALL TER (STCR, PC, NS2, NACT, 1, 2) ``` ``` CALL MMUL (BST, STOR, NS2, NACT, NS2, 3331) ENDIF GO TO 1' CONTINUE 21. PRINT', " THE CHECK FOR LINEAR COMBONATIONS ON CONTROL! L = NS +1 DO 3 (I=1, hC 4= IC (I) CALL FORMC(CC, FHIS, NS, NS2, NSEN, IS) DO 3 1 K=1, NS 00 3 1 a=1,15EN V(E,K) = CC(E,K) 3:1 00 3 2 J=1, NSEN V(J,L) = PHIS(!,J) 362 CALL LSVDF(V, NBIM, NSEN, L, TEN, NBIM, -1, SING, STOR, TER) PRINTS, THE CONTROL MODES USED IN THE CHECK! PRINT*, (IS(K), K=1,NS)," SINGULAR VALUES! PRINT*, * 326 CALL FRNT (SING, L, 1) IF (DEC.EO.1) THEN L = HC +1 DO 3 3 I=1, NS M = IS(I) GALL FORMB(EG, PHI, NO, NO2, NACT, 13) DO 3 4 K=1,10 DO 3 4 E=1, | ACT V(K, S) = SO((K+NO), E) 3: 4 DO 3 F J=1, NACT 3. 5 V(L_{\bullet},I) = FHI(h_{\bullet}J) CALL ISVOF(V, NEIM, L, NACT, TEN, NOIM, -1, SING, STOP, LER) PRINTA, " THE CONTROL MODES USED IN THE CHECK!" PRINTS, (IC(K), K=1,NG), M PRINTS, THE SINGULAS THE STROULAS VALUES! 3, 3 CALL FRAT (SING, L, 1) ENDIF PRINT, . TO CHANGE THE WEIGHTING MATRIX ENTER 11. TO REARKANGE MODES FOR N = ", N, " OR TO MAKE A " PRINTA, . PRINT, . DECOUPLED RUN ENTER 2 * PRINTA, TO TERMINATE THE FUR ENTER 3 > 1 READ ,0 PRINTA, O IF (0.E0.1) THEN G070 121 ELSFIF (P., C.2) THEN GOTO 299 ENDIF 126 END ``` | | -NAME4DSRESSFLU | | |-------|--------------------------|--| | | ACT | 20:738 | | 1++ | AKC | 31: 2- 5 | | 4 7 4 | A KOI | a de la composição l | | 1++ | 88 | 346228 | | 144 | 29 | 363638 | | | 154
154
154
144 | ACT
15+ AMC
177 AKCC
177 BB | ``` SUBROUTINE TIME (FAT2, MM, DT, X1, XD, MDDE, EAF, WORK, DEC) COMMUNICATINA/NEA, NOA1 COMMON/SAVE/T(101),TS(110) FM, EM, CM, (12), 17 (12), 18 (12), NO, NS, NR REAL XO (NDA), EATE (NDA, NDA), EFT (NDA, NDA), DT, MCDE (2, 12) REAL WORK (NEA, NDA), A, AA, Z, X1 (NDA) INTEGER MM, DED, Z7 N=1 KK = !: A= 7 2:-3 CONTINUE M= . 2(1 CONTINUE CALL VMULFF (EAT2, XU, MM, MM, 1, 40, +0, K1, 60, , IER) 00 113 I=1, MN 113 XO(I) = X1(I) M= M+1 IF ((4*DT) .EG. THEN A = 4 + 6.5 DD 2.2 K=1,2 AA = . . . IF (DED. EQ. .) THEN DO 2 1 1=1, NC J = IC(I) 2 4 AA = AA+ MODE(K, J) AX1(I) 00 2 ! I=1.NS J=IS(I) AA= AA+ MODE(K,J) +X1(I+NC+L) 2.5 00 2 E I=1, Nic J=IR(I) 2.3 AG = AA+ MODE(K, J) 4X1(I+40-4+85+2) EL SE 00 211 I=1, NC J = IC(I) 211 AA = AA + MCUE(K,J) + X1(I) 00 212 I=1.NS J= IS (I) 212 AA = AA + MCDE(K, J)^{-2} \times X1(1 + NO+4) ENDIF T(N)= 44 H=N+1 2.2 BUALTA CO IF (A.GF.20.1) GOTO 21 G0T0 2 3 EL SE SOTO 2'1 . : 1 ENDIF 21 CONTINUE A= .3 r= 54 (5, 10) PRINT*, * TIME y . 00 1 I=1,L,2 WITTE(", 3) /, T(_), T(I+1) 1= 54 ... PRINTA, 4 FORMAT(3X,F1.1,6X,F15.6,4X,F15.5) ``` SUBROUTINE FORMS(3,PHI,N,N2,NAST,I)) GOMMONYELINIZHOIM REAL P(NDIE,NOIM),PHI(IDIE,NOIM) INTEGER IC(N),NACT,N,M,I,J,DF DD 1 I=1,N2 JC 1 J=1,NACT R(I,J) = _... 1 CONTINUE DD 2 I=1,N DD 2 J=1,NCCT i= ID(T) P((N-1),J) = FH_(1,J) CONTINUE IND ``` SUBROUTINE FORMX1 (XO. INIT) COMMON/NUM/IC(12), IS(12), IE(12), NO, NS, NR REAL XO(4.1), 1NJT(4,12) INTESER + DO 1 I=1.NO M = IC(I) XO(I) = INIT(1,M) (M,S)TINI = (3.4+1)CX (n, \varepsilon) \text{ TIAL} = (CN^2 + 1) CX 1 XO(I+3^{\circ}NC) = INIT(4,M) 00 2 J=1,NS M = IS(1) XD(II+I+I) = INIT(1,h) XO(I+A*AO+AS) = IAIT(2,4) (M, E)TINI = (2N^2S+3N^3+I)CX 2 XO(I+4*NC+3*NS) = INIT(+,N) DO 3 I=1, NR M=IR(I) (M, L) TIRI = (2M^{+}L^{+}CM^{+}L^{+}I) CX 3 XO(1+NC*!+NS*4+NR) = INIT(2, M) END SUPROUTINE FORMXU(XO, IMIT) PR. ER. CV., (12), 15 (12), 17 (12), NS, NR REAL XO(A.), INIT(4,12) INTEGER A DO 1 I=1,NO M = IO(I) XO(I) = INIT(1,4) (M,S) TIAI = INIT(2,M) XO(I+IC+2) = INIT(3,4) XO(I+hO*Z) = IhIT(4,M) 1 00. 2 J=1, NS M= IS (I) X0 (I +h01 -) =INIT(1,M) XO(I+10'~+45) = INIT(2,4) 2 00 3 I=1, N: M = IC(I) X0 (1+101-+55-2) = INIT (1, Y) XO(I+10+0+0.5+2+112) = IMIT(2,0) 3 END ``` SUBROUTICE PENT (MAT, N, M) COMMON / MAINING IN MEAL FIT (MAIM, NOIM) INTEGER N, I, J PRINTE, F OD 1 I=1, 1 PRINTE(1> F12.4)*, (MAT (I, J), J=1, M) CONTINUE PRINTE(///) ITUM INC. ## Vita William Thomas Miller was born October 3, 1959, in St Louis, Missouri. Graduating in 1969 from St Mary's High School, which is located in St Louis, he received an appointment to the United States Air Force Academy. He graduated in 1973 with a Bachelor of Science in Aeronautical Engineering and a regular commission in the United States Air Force. He attended Undergraduate Pilot Training at Laughtin Air Force Base. Texas. After graduating, he was assigned to the 97th Air Refueling Squadron at Blytheville Air Force Base. Arkansas. He ramined at Blytheville on a combat crew, afroncing to aircreft commander, until his assignement to the 7xIT School of Engineering. Permanent Address: 3424 Homphrey Street to Louis, Missouri 63118 SECURITY CLASSIFICATION OF THIS PAGE (When Data
Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--|--| | REPORT NUMBER 2. GOVT ACCESSION NO. | <u> </u> | | AFIT/GAE/AA/81D-20 } P-/+///// | | | 4. TITLE (and Subtitle) | 5. TYPE OF REPORT & PERIOD COVERED | | DECENTRALIZED CONTROL OF LARGE SPACE | MS Thesis | | STRUCTURES | 6. PERFORMING ORG. REPORT NUMBER | | 7. AUTHOR(s) | 8. CONTRACT OR GRANT NUMBER(s) | | William Thomas Miller, Capt , USAF | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | | December 1981 | | | 13. NUMBER OF PAGES | | 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS, (of this report) | | | Unclassified | | | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE | | 16. DISTRIBUTION STATEMENT (of this Report) | L | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro | m Report) | | | 28 JAN 1982 | | 18. SUPPLEMENTARY NOTES | | | , , , , , , , , , , , , , , , , , , , | diche Line | | = APFINOMECO | Trans | | | FACTOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) | | | Decentralized control | Ale Force Includes of The Control of the | | Linear system | Write to | | Modal control | | | 20 ABSTRACT (Continue on reverse side if necessary and identify by block number) A development and analysis of a single control | ller, before and after the | | elimination of "spillover" terms, is implemented to | attempt to achieve desired | | response characteristics of the structure under evadata as a basis for comparison, a pair of decentral | | | implemented on the structure. Problems encountered | with the implementation | | of more than two decentralized controllers are inve-
used for the investigation is a lumped mass tetrahe | estigated. The structure | | the fire | dion. | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) ## DATE FILMED DTIC